TETRAVALENT EDGE-TRANSITIVE CAYLEY GRAPHS WITH ODD NUMBER OF VERTICES

CAI HENG LI AND ZAI PING LU

Abstract. A characterisation is given of edge-transitive Cayley graphs of valency 4 on odd number of vertices. The characterisation is then applied to solve several problems in the area of edge-transitive graphs: answering a question proposed by Xu (1998) regarding normal Cayley graphs; providing a method for constructing edge-transitive graphs of valency 4 with arbitrarily large vertex-stabiliser; constructing and characterising a new family of half-transitive graphs. Also this study leads to a construction of the first family of arc-transitive graphs of valency 4 which are non-Cayley graphs and have a ‘nice’ isomorphic 2-factorisation.

1. Introduction

A graph Γ is a Cayley graph if there exist a group G and a subset $S \subset G$ with $1 \not\in S = S^{-1} := \{g^{-1} \mid g \in S\}$ such that the vertices of Γ may be identified with the elements of G in such a way that x is adjacent to y if and only if $yx^{-1} \in S$. The Cayley graph Γ is denoted by $\text{Cay}(G, S)$. Throughout this paper, denote by 1 the vertex of $\text{Cay}(G, S)$ corresponding to the identity of G.

It is well-known that a graph Γ is a Cayley graph of a group G if and only if the automorphism group $\text{Aut}\Gamma$ contains a subgroup which is isomorphic to G and acts regularly on vertices. In particular, a Cayley graph $\text{Cay}(G, S)$ is vertex-transitive of order $|G|$. However, a Cayley graph is of course not necessarily edge-transitive. In this paper, we investigate Cayley graphs that are edge-transitive.

Small valent Cayley graphs have received attention in the literature. For instance, Cayley graphs of valency 3 or 4 of simple groups are investigated in [5, 6, 28]; Cayley graphs of valency 4 of certain p-groups are investigated in [7, 26]. A relation between regular maps and edge-transitive Cayley graphs of valency 4 is studied in [20]. In the main result (Theorem 1.1) of this paper, we characterise edge-transitive Cayley graphs of valency 4 and odd order. To state this result, we need more definitions.

1.1. Let Γ be a graph with vertex set $V\Gamma$ and edge set $E\Gamma$. If a subgroup $X \leq \text{Aut}\Gamma$ is transitive on $V\Gamma$ or $E\Gamma$, then the graph Γ is said to be X-vertex-transitive or X-edge-transitive, respectively. A sequence v_0, v_1, \ldots, v_s of vertices of Γ is called an s-arc if $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$, and $\{v_i, v_{i+1}\}$ is an edge for $0 \leq i \leq s - 1$. The graph Γ is called (X, s)-arc-transitive if X is transitive on the s-arcs of Γ; if in addition X is not transitive on the $(s+1)$-arcs, then Γ is said to be (X, s)-transitive. In particular, a 1-arc is simply called an arc, and an $(X, 1)$-arc-transitive graph is called X-arc-transitive.

Date: July 13, 2005.

The first author was supported by an ARC Discovery Project Grant and a QEII Fellowship. The second author was partially supported by the NNSF and TYYF of China.
A typical method for studying vertex-transitive graphs is taking certain quotients. For an X-vertex-transitive graph Γ and a normal subgroup $N \triangleleft X$, the normal quotient graph Γ_N induced by N is the graph that has vertex set $V\Gamma_N = \{v^N \mid v \in V\Gamma\}$ such that v_1^N and v_2^N are adjacent if and only if v_1 is adjacent in Γ to some vertex in v_2^N. If further the valency of Γ_N equals the valency of Γ, then Γ is called a normal cover of Γ_N.

Theorem 1.1. Let G be a finite group of odd order, and let $\Gamma = \text{Cay}(G, S)$ be connected and of valency 4. Assume that Γ is X-edge-transitive, where $G \leq X \leq \text{Aut}\Gamma$. Then one of the following holds:

1. G is normal in X, $X_1 \leq D_8$, and $S = \{a, a^{-1}, a^\tau, (a^\tau)^{-1}\}$, where $\tau \in \text{Aut}(G)$ such that either $o(\tau) = 2$, or $o(\tau) = 4$ and $a^\tau = a^{-1}$;
2. there is a subgroup $M < G$ such that $M \triangleleft X$, and Γ is a cover of Γ_M;
3. X has a unique minimal normal subgroup $N \cong Z_p^k$ with p odd prime and $k \geq 2$ such that
 (i) $G = N \rtimes R \cong Z_p^k \rtimes Z_m$, where $m > 1$ is odd;
 (ii) $X = N \rtimes ((H \rtimes R), O) \cong Z_p^k \rtimes ((Z_2^l \times Z_m), Z_t)$, and $X_1 = H.O$, where $H \cong Z_2^l$ with $2 \leq l \leq k$, and $O \cong Z_t$ with $t = 1$ or 2, satisfying the following statements:
 (a) there exist $x_1, \cdots, x_k \in N$ and $\tau_1, \cdots, \tau_k \in H$ such that $N = \langle x_1, \cdots, x_k \rangle, (x_i, \tau_i) \cong D_{2p}$ and $H = \langle \tau_i \rangle \rtimes C_{H(x_i)}$ for $1 \leq i \leq k$;
 (b) R does not centralise H;
 (c) $X/(NH) \cong Z_m$ or D_{2m}, and Γ is X-arc-transitive if and only if $X/(NH) \cong D_{2m}$;
4. Γ is (X, s)-transitive, and X, X_1, s and G are as in the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>X_1</th>
<th>s</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_5, S_5</td>
<td>A_4, S_4</td>
<td>2</td>
<td>Z_5</td>
</tr>
<tr>
<td>$\text{PGL}(2, 7)$</td>
<td>D_{16}</td>
<td>1</td>
<td>$Z_7 \rtimes Z_3$</td>
</tr>
<tr>
<td>$\text{PSL}(2, 11), \text{PGL}(2, 11)$</td>
<td>A_4, S_4</td>
<td>2</td>
<td>$Z_{11} \rtimes Z_5$</td>
</tr>
<tr>
<td>$\text{PSL}(2, 23)$</td>
<td>S_4</td>
<td>2</td>
<td>$Z_{23} \rtimes Z_{11}$</td>
</tr>
</tbody>
</table>

Remarks on Theorem 1.1:

(a) The Cayley graph Γ in part (1), called normal edge-transitive graph, is studied in [21]. If further $X = \text{Aut}\Gamma$, then Γ is called a normal Cayley graph, introduced in [27]. For this type of Cayley graph, the action of X on the graph Γ is well-understood.

(b) Part (2) is a reduction from the Cayley graph Γ to a smaller graph Γ_M, which is also an edge-transitive Cayley graph of valency 4. An edge-transitive Cayley graph is called basic if it is not a normal cover of a smaller edge-transitive Cayley graph. Theorem 1.1 shows that if Γ is not a normal Cayley graph then Γ is a cover of a well-characterised graph, that is a basic Cayley graph satisfying part (3) or part (4).

(c) Construction 3.2 shows that for every group X satisfying part (3) with $O = 1$ indeed acts edge-transitively on some Cayley graphs of valency 4.

(d) Part (4) tells us that there are only three 2-arc-transitive basic Cayley graphs of valency 4 and odd order.
The following corollary of Theorem 1.1 gives a solution to Problem 4 of [27], in particular, answering the question stated there in the negative.

Corollary 1.2. There are infinitely many connected basic Cayley graphs of valency 4 and odd order which are not normal Cayley graphs.

The proof of Corollary 1.2 follows from Lemma 3.3.

It is well-known that the vertex-stabiliser for an s-arc-transitive graph of valency 4 with $s \geq 2$ has order dividing $2^{3}3^{6}$, see Lemma 2.5. However, in [22, 2], ‘non-trivial’ arc-transitive graphs of valency 4 which have arbitrarily large vertex-stabiliser are constructed. Part (3) of Theorem 1.1 characterises edge-transitive Cayley graphs of valency 4 and odd order with this property.

Corollary 1.3. Let Γ be a connected Cayley graph of valency 4 and odd order. Assume that Γ is X-edge-transitive for $X \leq \text{Aut}\Gamma$. Then $|X_1| > 24$ if and only if Γ is a cover of a graph satisfying part (3) of Theorem 1.1 with $l \geq 5$.

This characterisation provides a potential method for constructing edge-transitive graphs of valency 4 with arbitrarily large vertex-stabiliser, see Construction 3.2.

A graph Γ is called half-transitive if $\text{Aut}\Gamma$ is transitive on the vertices and the edges but not transitive on the arcs of Γ. Constructing and characterising half-transitive graphs was initiated by Tutte (1965), and is a currently active topic in algebraic graph theory, see [19, 20, 17] for references. Theorem 1.1 provides a method for characterising some classes of half-transitive graphs of valency 4. The following theorem is such an example.

Theorem 1.4. Let $G = N \rtimes \langle g \rangle = \mathbb{Z}_k^2 \times \mathbb{Z}_m < \text{AGL}(1,p^k)$, where $k > 1$ is odd, p is an odd prime and m is the largest odd divisor of $p^k - 1$. Assume that Γ is a connected edge-transitive Cayley graph of G of valency 4. Then $\text{Aut}\Gamma = G \rtimes \mathbb{Z}_2$, Γ is half-transitive, and $\Gamma \cong \Gamma_i = \text{Cay}(G, S_i)$, where $1 \leq i \leq \frac{m - 1}{2}$, $(m, i) = 1$, and

$$S_i = \{ag^i, a^{-1}g^i, (ag^i)^{-1}, (a^{-1}g^i)^{-1}\}, \quad \text{where } a \in N \setminus \{1\}.$$

Moreover, $\Gamma_i \cong \Gamma_j$ if and only if $pi \equiv j$ or $-j \pmod{m}$ for some $r \geq 0$.

The following result is a by-product of analysing PGL(2,7)-arc-transitive graphs of valency 4. (For two graphs Γ and Σ which have the same vertex set V and disjoint edge sets E_1 and E_2, respectively, denote by $\Gamma + \Sigma$ the graph with vertex set V and edge set $E_1 \cup E_2$. For a positive integer n and a cycle C_m of size m, denote by nC_m the vertex disjoint union of n copies of C_m.)

Proposition 1.5. Let p be a prime such that $p \equiv -1 \pmod{8}$, and let $T = \text{PSL}(2, p)$ and $X = \text{PGL}(2, p)$. Then there exists an X-arc-transitive graph Γ of valency 4 such that the following hold:

(i) $\Gamma = \Delta_1 + \Delta_2$, $\Delta_1 \cong \Delta_2 \cong \frac{\text{AGL}(1,p^2) - 1}{48}C_3$, $T \leq \text{Aut}\Delta_1 \cap \text{Aut}\Delta_2$, and both Δ_1 and Δ_2 are T-arc-transitive; in particular, Γ is not T-edge-transitive;

(ii) Γ is a Cayley graph if and only if $p = 7$.

Part (i) of this proposition is proved by Lemma 4.3, and part (ii) follows from Theorem 1.1.

Remark on Proposition 1.5: The factorisation $\Gamma = \Delta_1 + \Delta_2$ is an isomorphic 2-factorisation of Γ. The group X is transitive on $\{\Delta_1, \Delta_2\}$ with T being the kernel. Such isomorphic factorisations are called homogeneous factorisations, introduced
and studied in [18, 9]. The factorisation given in Proposition 1.5 are the first
known example of non-Cayley graphs which have a homogeneous 2-factorisation,
refer to [9, Lemma 2.7] for a characterisation of homogeneous 1-factorisations.

This paper is organized as follows. Section 2 collects some preliminary results
which will be used later. Section 3 gives some examples of graphs appeared in
Theorem 1.1. Then Section 4 constructs the graphs stated in Proposition 1.5.
Finally, in Sections 5 and 6, Theorems 1.1 and 1.4 are proved, respectively.

2. Preliminary results

For a core-free subgroup H of X and an element $a \in X \setminus H$, let $[X : H] = \{Hx \mid x \in X\}$, and define the coset graph $\Gamma := \text{Cos}(X, H, H\{a, a^{-1}\}H)$ to be the graph with vertex set $[X : H]$ such that $\{Hx, Hy\}$ is an edge of Γ if and only if $yx^{-1} \in H\{a, a^{-1}\}H$. The properties stated in the following lemma are well-known.

Lemma 2.1. For a coset graph $\Gamma = \text{Cos}(X, H, H\{a, a^{-1}\}H)$, we have

(i) Γ is X-edge-transitive;
(ii) Γ is X-arc-transitive if and only if $HaH = Ha^{-1}H$, or equivalently, $HaH = HbH$ for some $b \in X \setminus H$ such that $b^2 \in H \cap H^3$;
(iii) Γ is connected if and only if $\langle H, a \rangle = X$;
(iv) the valency of Γ equals

$$\text{val}(\Gamma) = \begin{cases} |H : H \cap H^a|, & \text{if } HaH = Ha^{-1}H, \\ 2|H : H \cap H^a|, & \text{otherwise}. \end{cases}$$

Lemma 2.2. Let Γ be a connected X-vertex-transitive graph where $X \leq \text{Aut}\Gamma$, and let $N \vartriangleleft X$ be intransitive on $V\Gamma$. Assume that Γ is a cover of Γ_N. Then N is semiregular on $V\Gamma$, and the kernel of X acting on $V\Gamma_N$ equals N.

Proof. Let K be the kernel of X acting on $V\Gamma_N$. Then $N \vartriangleleft K \vartriangleleft X$. Suppose that $K_v \neq 1$, where $v \in V\Gamma$. Then since Γ is connected and $K \vartriangleleft X$, it follows that $K_v^{\Gamma(v)} \neq 1$. Thus the number of K_v-orbits in $\Gamma(v)$ is less than $|\Gamma(v)|$, and so the valency of Γ_N is less than the valency of Γ, which is a contradiction. Hence $K_v = 1$, and it follows that $N = K$ is semiregular on $V\Gamma$. \hfill \Box

For a Cayley graph $\Gamma = \text{Cay}(G, S)$, let $\text{Aut}(G, S) = \{\alpha \in \text{Aut}(G) \mid S^\alpha = S\}$. For the normal edge-transitive case, we have a simple lemma.

Lemma 2.3. Let $\Gamma = \text{Cay}(G, S)$ be connected of valency 4. Assume that $\text{Aut}\Gamma$ has a subgroup X such that Γ is X-edge-transitive and $G \vartriangleleft X$. Then $X \leq N_{\text{Aut}\Gamma}(G) = G \rtimes \text{Aut}(G, S)$, and either $X_1 \leq D_8$, or Γ is $(X, 2)$-transitive and $|G|$ is even.

Proof. Since Γ is connected, $\langle S \rangle = G$, and so $\text{Aut}(G, S)$ acts faithfully on S. Hence $\text{Aut}(G, S) \leq S_4$. By [8, Lemma 2.1], we have that $X \leq N_{\text{Aut}\Gamma}(G) = G \rtimes \text{Aut}(G, S)$. Thus $X_1 \leq \text{Aut}(G, S) \leq S_4$. Suppose that 3 divides $|X_1|$. Then X_1 is 2-transitive on S. Hence Γ is $(X, 2)$-transitive, and all elements in S are involutions, see for example [16]. In particular, $|G|$ is even. On the other hand, if 3 does not divide $|X_1|$, then X_1 is a 2-group, and hence $X_1 \leq D_8$. \hfill \Box

Lemma 2.4. Let G be a finite group of odd order, and let $\Gamma = \text{Cay}(G, S)$ be connected and of valency 4. Assume that $N \vartriangleleft X \leq \text{Aut}\Gamma$ such that $G \leq X$ and Γ is X-edge-transitive. Then one of the following statements holds:

...
(i) N has odd order and $N \leq G$;
(ii) N has even order, and either N is transitive on $V\Gamma$, or GN is transitive on $E\Gamma$.

Proof. Let $Y = GN$. Then Y is transitive on $V\Gamma$. Suppose that $N \not\leq G$. Then Y is not regular on $V\Gamma$. It follows that Y_1 is a nontrivial $\{2, 3\}$-group. If Y_1 has an orbit of size 3 on $\Gamma(1) = S$, then Y has an orbit on $E\Gamma$ which is a 1-factor of Γ, which is not possible since $|V\Gamma| = |G|$ is odd. It follows that either Y_1 is transitive on S, or Y_1 has an orbit of size 2 on S. In particular, $|Y_1|$ is even, so $|N|$ is even. Therefore, either N has odd order and $N \leq G$, as in part (i), or N has even order.

Assume now that $|N|$ is even. If Y_1 is transitive on S, then Γ is Y-arc-transitive and hence Y-edge-transitive, so part (ii) holds. Thus assume that Y_1 has an orbit of size 2 on S. Noting that $N < X$, $N_1 \neq 1$ and Γ is connected and X-vertex-transitive, it is easily shown that N_1 is non-trivial on S. Since $N_1 \leq Y_1$, N_1 has an orbit $\{x, y\}$ of size 2 on S. Suppose that N is intransitive on $V\Gamma$. Let $H = 1^N$ be the N-orbit containing 1. Then $H \cap S = \emptyset$ as Γ is X-edge-transitive. Further, $x^N = (1^N)^x = (1^N)x = Hx$ and $y^N = (1^N)y = (1^N)y = Hx$. Suppose that Γ forms a subgroup of G. In particular, $xy^{-1} \in H$. If $y = x^{-1}$, then $x^2 = xy^{-1} \in H$, and $x \in H$ as $|H|$ is odd, a contradiction. Thus $S = \{x, y, x^{-1}, y^{-1}\}$. Clearly, $\{x, y\}$ is an orbit of Y_1 on S. It follows that Y is transitive on $E\Gamma$, as in part (ii).

By the result of [14], there is no 4-arc-transitive graph of valency at least 3 on odd number of vertices. Then by the known results about 2-arc-transitive graphs (see for example [25] or [15, Subsection 3.1]), the following result holds.

Lemma 2.5. Let Γ be a connected (X, s)-transitive graph of valency 4. Then either $s \leq 4$ or $s = 7$, and further, s and the stabiliser X_v are listed as following:

<table>
<thead>
<tr>
<th>s</th>
<th>X_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-group</td>
</tr>
<tr>
<td>2</td>
<td>$A_4 \leq X_v \leq S_4$</td>
</tr>
<tr>
<td>3</td>
<td>$A_4 \times Z_3 \leq X_v \leq S_4 \times S_3$</td>
</tr>
<tr>
<td>4</td>
<td>$Z_4^3 \cdot SL(2, 3) \leq X_v \leq Z_4^3 \cdot GL(2, 3)$</td>
</tr>
<tr>
<td>7</td>
<td>$[3^5] \cdot SL(2, 3) \leq X_v \leq [3^5] \cdot GL(2, 3)$</td>
</tr>
</tbody>
</table>

Moreover, if $|V\Gamma|$ is odd, then $s \leq 3$.

Finally, we quote a result about simple groups, which will be used later.

Lemma 2.6. ([12]) Let T be a non-abelian simple group which has a 2'-Hall subgroup. Then $T = PSL(2, p)$, where $p = 2^e - 1$ is a prime. Further, $T = GH$, where $G = \mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$ and $H = D_{p+1} = D_{2^e}$.

3. Existence of graphs satisfying Theorem 1.1

In this section, we construct examples of graphs satisfying Theorem 1.1.

First consider part (1) of Theorem 1.1. We observe that if Γ is a connected normal edge-transitive Cayley graph of a group G of valency 4, then $G = \langle a, a^\tau \rangle$, where $\tau \in \text{Aut}(G)$ such that $a^2 = a$ or a^{-1}. Conversely, if G is a group that has a presentation $G = \langle a, a^\tau \rangle$, where $\tau \in \text{Aut}(G)$ such that $a^2 = a$ or a^{-1}, then G has
a connected normal edge-transitive Cayley graph of valency 4, that is, \(\text{Cay}(G, S) \) where \(S = \{a, a^{-1}, a^\tau, (a^\tau)^{-1}\} \). Thus we have the following conclusion:

Lemma 3.1. Let \(G \) be a group of odd order. Then \(G \) has a connected normal edge-transitive Cayley graph of valency 4 if and only if \(G = \langle a, a^\tau \rangle \), where \(\tau \in \text{Aut}(G) \) such that \(a^{\tau^2} = a \) or \(a^{-1} \).

See Construction 6.1 for an example of such construction.

The following construction produces edge-transitive graphs admitting a group \(X \) satisfying part (3) of Theorem 1.1 with \(O = 1 \).

Construction 3.2. Let \(X = N \rtimes (H \rtimes R) \cong \mathbb{Z}_p^k \rtimes (\mathbb{Z}_2 \rtimes \mathbb{Z}_m) \), where \(p \) is an odd prime, \(m \) is odd and \(2 \leq l \leq k \), such that \(N \cong \mathbb{Z}_p^l, H \cong \mathbb{Z}_2 \) and \(R \cong \mathbb{Z}_m \) satisfy

1. \(N \) is the unique minimal normal subgroup of \(X \);
2. there exist \(x \in N \setminus \{1\} \) and \(\tau \in H \) such that \(x^\tau = x^{-1} \) and \(H = \langle \tau \rangle \times C_H(x) \);
3. \(R \) does not centralise \(H \).

Let \(R = \langle \sigma \rangle \cong \mathbb{Z}_m \), and let \(y = x\sigma \). Set

\[
\Gamma(p, k, l, m) = \text{Cos}(X, H, H\{y, y^{-1}\} H).
\]

The next lemma shows that the graphs constructed here are as required.

Lemma 3.3. Let \(\Gamma = \Gamma(p, k, l, m) \) be a graph constructed in Construction 3.2, and let \(G = N \rtimes R \cong \mathbb{Z}_p^k \rtimes \mathbb{Z}_m \). Then \(\Gamma \) is a connected \(X \)-edge-transitive Cayley graph of \(G \) of valency 4, and \(G \) is not normal in \(X \).

Proof. By the definition, \(H \) is core-free in \(X \), and hence \(X \leq \text{Aut}\Gamma \). Now \(X = GH \) and \(G \cap H = 1 \), and thus \(G \) acts regularly on the vertex set \([X : H] \). So \(\Gamma \) is a Cayley graph of \(G \), which has odd order \(p^k m \). Obviously, \(G \) is not normal in \(X \).

For \(x \) and \(\sigma \) defined in Construction 3.2, set \(x_i = x^{\sigma^{i-1}} \) for \(i = 1, 2, \ldots, m \), and let \(\alpha = (\sigma^{-1})^\tau \). Then, as \(y = x\sigma, x_2 = \sigma^{-1} x\sigma \) and \(\tau \in H \), we have

\[
\alpha x_2^2 = ((\sigma^{-1})^\tau \sigma)(\sigma^{-1} x\sigma)^2 = (\sigma^{-1})^\tau x^2 \sigma = (x^{-1} \sigma^{-1})^\tau (x\sigma) = (y^{-1} y \in \langle H, y \rangle).
\]

As \(\tau \in H \) and \(\sigma \) normalises \(H \), we have \(\alpha = (\sigma^{-1})^\tau \sigma = \tau(\sigma^\tau) \in H \). Thus \(x_{2i}^2 = \alpha^{-1}(\alpha x_2^2) \in \langle H, y \rangle \), and as \(x_2 \) has odd order, \(x_2 \in \langle H, y \rangle \). Then \(x_3 = x_2 x_{2i}^2 = x_2^3 \sigma = x_2^3 \in \langle H, y \rangle \). Similarly, we have that \(x_i \in \langle H, y \rangle \) for \(i = 2, 3, \ldots, m \). Then calculation shows that \(y^n = x_1 x_2 \cdots x_m \in \langle H, y \rangle \). Thus \(x = x_1 = x^n x_2 \cdots x_m \in \langle H, y \rangle \), and so \(\sigma = x^{-1} y \in \langle H, y \rangle \). Since \(N \) is a minimal normal subgroup of \(X \), we conclude that \(N = \langle x^{h\sigma^i} \mid h \in H, 0 \leq i \leq m - 1 \rangle \), and hence \(N \leq \langle H, y \rangle \). So \(\langle H, y \rangle \cong \langle N, H, \sigma \rangle = X \), and \(\Gamma \) is connected.

Finally, as \(\sigma \) normalises \(H \) and by condition (b) of Construction 3.2, we have that \(H^\sigma \cap H = C_H(x) \) has index 2 in \(H \). Thus \(H^\sigma \cap H = (H^\sigma \cap H^\sigma^{-1})^\sigma = (H^\sigma \cap H)^\sigma = C_H(x)^\sigma \), which has index 2 in \(H \). Since \(X \leq \text{Aut}\Gamma \), \(\Gamma \) is not a cycle. By Lemma 2.1, \(\Gamma \) is connected, \(X \)-edge-transitive and of valency 4.

We end this section with presenting several groups satisfying (a), (b) and (c) of Construction 3.2, so we obtain examples of graphs satisfying Theorem 1.1.(3).

Example 3.4. Let \(p \) be an odd prime, and \(m \) an odd integer.

(i) Let \(X = \langle x_1, \tau_1 \rangle \times \langle x_2, \tau_2 \rangle \times \cdots \times \langle x_m, \tau_m \rangle \times \langle \sigma \rangle \cong D_{2p} \times \mathbb{Z}_m = D_{2p} \times \mathbb{Z}_m \), where \(\langle x_i, \tau_i \rangle \cong D_{2p} \) and \(\langle x_i, \tau_i \rangle^\sigma = \langle x_{i+1}, \tau_{i+1} \rangle \) (reading the subscripts...
mod 1). Then \(N = \langle x_1, x_2, \ldots, x_m \rangle \cong \mathbb{Z}^m_p \) is a minimal normal subgroup of \(X \), and \(H = \langle \tau_1, \tau_2, \ldots, \tau_m \rangle \cong \mathbb{Z}^m_2 \) is such that \(H = \langle \tau_i \rangle \times C_H(x_i) \) for \(1 \leq i \leq m \).

(ii) Let \(Y < X \) with \(X \) as in part (i) such that \(Y = \langle x_1, x_2, \ldots, x_m \rangle \times \langle \tau_1 \tau_2, \tau_2 \tau_3, \ldots, \tau_{m-1} \tau_m \rangle \times \langle \sigma \rangle \cong \mathbb{Z}^m_2 \rtimes \mathbb{Z}^{m-1}_2 \rtimes \mathbb{Z}_m \). Then \(N = \langle x_1, x_2, \ldots, x_m \rangle \) is a minimal normal subgroup of \(Y \), and \(L := \langle \tau_1 \tau_2, \tau_2 \tau_3, \ldots, \tau_{m-1} \tau_m \rangle \cong \mathbb{Z}^{m-1}_2 \) is such that \(L = \langle \tau_i \tau_{i+1} \rangle \times C_L(x_i) \) for \(1 \leq i \leq m \).

Thus both \(X \) and \(Y \) satisfy the conditions of Construction 3.2.

Example 3.5. Let \(N = \langle x_1, \ldots, x_k \rangle = \mathbb{Z}_p^k \), where \(p \) is an odd prime and \(k \geq 3 \).

Let \(l \) be a proper divisor of \(k \). Let \(\sigma \in \text{Aut}(N) \) be such that

\[
x_i^\sigma = \begin{cases}
 x_{i+1}, & \text{if } 1 \leq i \leq k-1, \\
 x_1x_{i+1}, & \text{if } i = k.
\end{cases}
\]

Let \(\tau \in \text{Aut}(N) \) be such that

\[
x_j^\tau = \begin{cases}
 x_{j-1}^{-1}, & \text{if } l \mid j - 1, \\
 x_j, & \text{otherwise}.
\end{cases}
\]

Let \(o(\sigma) = m \), \(H = \langle \tau^{\sigma i-1} \mid 1 \leq i \leq m \rangle \) and \(X = N \rtimes \langle \tau, \sigma \rangle \). Then \(N \) is a minimal normal subgroup of \(X \) and \(H = \langle \tau \rangle \times C_H(x_1) \cong \mathbb{Z}^2_2 \). Thus \(X \) satisfies the conditions of Construction 3.2.

For instance, taking \(p = 3, k = 9 \) and \(l = 3 \), so \(m = 39 \), and then applying Construction 3.2, we obtain an \(X \)-edge-transitive Cayley graph \(\Gamma(3, 9, 3, 39) \) of valency 4 of the group \(\mathbb{Z}_3^3 \rtimes \mathbb{Z}_{39} \), where \(X = \mathbb{Z}_3^3 \rtimes (\mathbb{Z}_2^3 \rtimes \mathbb{Z}_{39}) \).

4. A FAMILY OF ARC-TRANSITIVE GRAPHS OF VALENCY 4

Here we construct a family of 4-arc-transitive cubic graphs and their line graphs. The smallest line graph is \(\text{PGL}(2, 7) \)-arc-transitive but not \(\text{PSL}(2, 7) \)-edge-transitive, which is one of the graphs stated in Theorem 1.1 (4).

Construction 4.1. Let \(p \) be a prime such that \(p \equiv -1 \pmod{8} \), and let \(T = \text{PSL}(2, p) \) and \(X = \text{PGL}(2, p) \). Then \(T \) has exactly two conjugacy classes of maximal subgroups isomorphic to \(S_4 \) which are conjugate in \(X \). Let \(L, R < T \) be such that \(L, R \cong S_4 \), \(L \cap R \cong D_8 \), and \(L, R \) are not conjugate in \(T \) but \(L \Gamma = R \) for some involution \(\tau \in X \setminus T \).

1. Let \(X = \cos(T, L, R) \) be the coset graph defined as: the vertex set \(V X = \{ T : L \} \cup \{ T : R \} \) such that \(Lx \) is adjacent to \(Ry \) if and only if \(yx^{-1} \in LR \).

2. Let \(\Gamma \) be the line graph of \(X \), that is, the vertices of \(\Gamma \) are the edges of \(X \) and two vertices of \(\Gamma \) are adjacent if and only if the corresponding edges of \(X \) have exactly one common vertex.

Then it follows from the definition that \(X \) is bipartite with parts \([T : L] \) and \([T : R] \), and \(T \) acts by right multiplication transitively on the edge set \(E X \). Further, we have the following properties.

Lemma 4.2. The following statements hold for the graph \(X \) defined above:

(i) \(X \) is connected and of valency 3;
(ii) \(X \) may also be represented as the coset graph \(\cos(X, L, \tau L) \);
(iii) \(X \) is \((X, 4) \)-arc-transitive;
(iv) Σ is T-vertex intransitive and locally $(T,4)$-arc-transitive.

Proof. Since $(L,R) = T$, part (i) follows from the definition, see [10, Lemma 2.7]. Part (ii) follows from the definitions of $\text{Cos}(T,L,R)$ and $\text{Cos}(X,L,L\tau L)$.

Next we study the line graph Γ in the following lemma.

Lemma 4.3. Let Γ be the line graph of Σ defined as in Construction 4.1. Let v be the vertex of Γ corresponding to the edge $\{L,R\}$ of Σ. Then we have the following statements:

(i) Γ is connected, and has valency 4 and girth 3;
(ii) Γ is X-arc-transitive, and $X_v \cong D_{16}$;
(iii) T is transitive on $V\Gamma$ and intransitive on $E\Gamma$, and $T_v \cong D_8$;
(iv) T has exactly two orbits E_1, E_2 on $E\Gamma$, and letting $\Delta_1 = (V\Gamma, E_1)$ and $\Delta_2 = (V\Gamma, E_2)$, we have $\Delta_1 \cong \Delta_2 \cong \frac{(p^2-1)}{48}C_3$, and $\Gamma = \Delta_1 + \Delta_2$.

Proof. We first look at the neighbors of the vertex v in Γ. Let $a \in L$ be of order 3, and let $b = a^7 \in R$. Then the 3 neighbors of L in Σ are R, Ra and Ra^{-1}; and the 3 neighbors of R are L, Lb and Lb^{-1}. Write the corresponding vertices of Γ as: $u_1 = \{Lb, R\}$, $u_2 = \{Lb^{-1}, R\}$, $w_1 = \{L, Ra\}$ and $w_2 = \{L, Ra^{-1}\}$. Then the neighborhood $\Gamma(v) = \{u_1, u_2, w_1, w_2\}$.

Thus Γ is of valency 4. By the definition of a line graph, u_1 is adjacent to w_2, and u_2 is adjacent to w_1. Hence the girth of Γ is 3. Since Σ is connected, Γ is connected too, proving part (i).

Now $T_v = L \cap R \cong D_8$ and $X_v = (L \cap R, \tau) \cong D_{16}$. Since T is transitive on $E\Sigma$ and is not transitive on the vertex set $V\Sigma$, there is no element of T maps the arc (L,R) to the arc (R,L). Since $T_v = L \cap R$, there exist $\sigma_1, \sigma_2 \in T_v$ such that $a^{\sigma_1} = a^{-1}$ and $b^{\sigma_2} = b^{-1}$. Thus $w_1^{\sigma_1} = u_2$ and $w_2^{\sigma_2} = u_2$. So T_v has exactly two orbits on $\Gamma(v)$, that is, $\{u_1, u_2\}$ and $\{w_1, w_2\}$. Further, (b) acts transitively on $\{v, u_1, u_2\}$. It follows that $E_1 := \{u_1, u_2\}^T$ is a self-paired orbital of T on $V\Gamma$. Therefore, Γ is not T-edge-transitive. Further, since τ interchanges L and R and also interchanges a and b, it follows that $\tau \in X_v$ and $\{u_1, u_2\}^\tau = \{w_1, w_2\}$. Thus Γ is X-arc-transitive.

Let $E_2 = \{w_1, w_2\}^T$, and let $\Delta_1 = (V\Gamma, E_1)$ with $i = 1, 2$. Then $\Gamma = \Delta_1 + \Delta_2$, and Δ_i consists of cycles of size 3. Thus $|E_1| = |E_2| = |V\Gamma| = \frac{|X|}{|T|} = \frac{(p^2-1)}{48}$, and Δ_i consists of $\frac{|E_i|}{3}$ cycles of size 3, that is, $\Delta_i \cong \frac{(p^2-1)}{48}C_3$. Finally, $E_1^\tau = E_2$ and so τ is an isomorphism between Δ_1 and Δ_2. \hfill \Box

5. Proof of Theorem 1.1

Let G be a finite group of odd order, and let $\Gamma = \text{Cay}(G, S)$ be connected and of valency 4. Assume that Γ is X-edge-transitive, where $G \leq X \leq \text{Aut}\Gamma$, and assume further that G is not normal in X.

We first treat the case where Γ has no non-trivial normal quotient of valency 4 in Subsection 5.1 and 5.2.

Suppose that each non-trivial normal quotient of Γ is a cycle. Let N be a minimal normal subgroup of X. Then $N = T^k$ for some simple group T and some
integer $k \geq 1$. Since $|VT| = |G|$ is odd, X has no nontrivial normal 2-subgroups. In particular, N is not a 2-group. Further we have the following simple lemma.

Lemma 5.1. Either N is soluble, or $C_X(N) = 1$.

Proof. Suppose that N is insoluble and $C := C_X(N) \neq 1$. Then $NC = N \times C$ and $C \vartriangleleft X$. Since $|N|$ is not semiregular on VT, C is intransitive. By the assumption that any non-trivial normal quotient of G is a cycle, Γ_C is a cycle. Let K be the kernel of X acting on $V \Gamma_C$. Then $X/K \leq \text{Aut}\Gamma_C \cong D_{2c}$, where $c = |V \Gamma_C|$. It follows that $N \leq K$. Let Δ be an arbitrary C-orbit on $V \Gamma$. Then Δ is N-invariant. Consider the action of NC on Δ, and let D be the kernel of NC acting on Δ. Then $NC/D = (ND/D) \times (CD/D)$. Since C is transitive on Δ, CD/D is also transitive on Δ. Then ND/D is semiregular on Δ. Noting that $|\Delta|$ is odd and $ND/D \cong N/(N \cap D) \cong T^{k'}$ for some $k' \geq 0$, it follows that ND/D is trivial on Δ, and hence $N \leq D$. Thus N is trivial on every C-orbit, and so N is trivial on $V \Gamma$, which is a contradiction. Therefore, either N is soluble, or $C_X(N) = 1$. \square

5.1. The case where N is transitive

Assume that N is transitive on the vertices of Γ. Our goal is to prove that $N = A_5$, PSL$(2, 7)$, PSL$(2, 11)$ or PSL$(2, 23)$ by a series of lemmas. The first shows that N is nonabelian simple.

Lemma 5.2. The minimal normal subgroup N is a nonabelian simple group, X is almost simple, and $N = \text{soc}(X)$.

Proof. Suppose that N is abelian. Since N is transitive, N is regular, and hence $|N| = |G|$ is odd. By Lemma 2.3, we have that $N \leq G$, and so $G = N \vartriangleleft X$, which is a contradiction. Thus $N = T^k$ is nonabelian. Suppose that $k > 1$. Let L be a normal subgroup of N such that $L \cong T^{k-1}$. Since $N_2 \leq X_1$ is a $\{2, 3\}$-group, it follows that L is intransitive on $V \Gamma$; further, since $|V \Gamma|$ is odd and $|T|$ is even, L is not semiregular. It follows from Lemma 2.2 that Γ_L is a cycle. Then $\text{Aut}\Gamma_L$ is a dihedral group. Thus N lies in the kernel of X acting on $V \Gamma L$, and so N is intransitive on $V \Gamma$, which is a contradiction. Thus $k = 1$, and $N = T$ is nonabelian simple. By Lemma 5.1, $C_X(N) = 1$, and hence N is the unique minimal normal subgroup of X. Thus X is almost simple, and $N = \text{soc}(X)$. \square

The 2-arc-transitive case is determined by the following lemma.

Lemma 5.3. Assume Γ is $(X, 2)$-arc-transitive. Then one of the following holds:

(i) $X = A_5$ or S_5, and $X_1 = A_4$ or S_4, respectively, and $G = Z_5$;

(ii) $X = \text{PSL}(2, 11)$ or $\text{PGL}(2, 11)$, and $X_1 = A_4$ or S_4, respectively, and $G = Z_{11} \rtimes Z_5$;

(iii) $X = \text{PSL}(2, 23)$, $X_1 = S_4$, and $G = Z_{23} \rtimes Z_{11}$.

Proof. Note that $X = GX_1$ and $G \cap X_1 = 1$. By Lemma 2.5, $|X_1|$ is a divisor of $2^43^2 = 144$, and hence a Sylow 2-subgroup of X is isomorphic to a subgroup of $D_8 \times Z_2$. Further, $|N : (G \cap N)| = |G : G|$ divides $|X : G| = |X_1|$. Let M be a maximal subgroup of N containing $G \cap N$. Then $|N : M|$ has size dividing 144, and N is a primitive permutation group on $[N : M]$. Inspecting the list of primitive permutation groups of small degree given in [3, Appendix B], we conclude that N is one of the following groups:

$A_5, A_6, \text{PSL}(2, 7), \text{PSL}(2, 8), \text{PSL}(2, 11), M_{11}, \text{PSL}(2, 17), \text{PSL}(2, 23), \text{PSL}(2, 47), \text{PSL}(2, 71)$ and $\text{PSL}(3, 3)$.
It is known that the groups M_{11}, $\text{PSL}(2, 17)$, $\text{PSL}(2, 47)$ and $\text{PSL}(3, 3)$ have a Sylow 2-subgroup isomorphic to $Q_8 \rtimes \mathbb{Z}_2$, D_{16}, D_{16} and $\mathbb{Z}_2 \rtimes Q_8$, respectively. Thus N is none of these groups. Suppose that $N = A_5$ or $\text{PSL}(2, 8)$. Then $X = A_5$, S_6, $\text{PSL}(2, 8)$ or $\text{PSL}(2, 8) \rtimes \mathbb{Z}_3$. However, X has no factorisation $X = GX_1$ such that $G \cap X_1 = 1$, and X_1 is a $(2, 3)$-group, which is a contradiction. Suppose that $N = \text{PSL}(2, 71)$. Then $X = \text{PSL}(2, 71)$ or $\text{PGL}(2, 71)$, and $X_1 = D_{72}$ or D_{144}, respectively, and $G = \mathbb{Z}_{71} \rtimes \mathbb{Z}_{35}$. Thus X_1 is a maximal subgroup of X, and X acts primitively on the vertex set $V = [X : X_1]$. This is not possible, see [24] or [17]. Let $N = \text{PSL}(2, 7)$, then $G = \mathbb{Z}_7$ and $N_4 = S_4$. Then, however, N is 2-transitive on V.

Therefore, $N = A_5$, $\text{PSL}(2, 11)$ or $\text{PSL}(2, 23)$. Now either X is primitive on V or $X = N = \text{PSL}(2, 11)$ and $G = \mathbb{Z}_{11} \rtimes \mathbb{Z}_5$. Then, by [23] and [11], we obtain the conclusion stated in the lemma.

The next lemma determines X for the case where Γ is not $(X, 2)$-arc-transitive.

Lemma 5.4. Suppose that Γ is not $(X, 2)$-arc-transitive. Then $X = \text{PGL}(2, 7)$, $X_1 = D_{16}$ and $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$.

Proof. Since Γ is not $(X, 2)$-arc-transitive, X_1 is a 2-group. Since $X = GX_1$ and $G \cap X_1 = 1$, G is a $2'$-Hall subgroup of X. Then $G \cap N$ is a $2'$-Hall subgroup of N. By Lemma 5.2, N is nonabelian simple. By Lemma 2.6, $N = \text{PSL}(2, p)$, $G \cap N = \mathbb{Z}_p \times \mathbb{Z}_{e-1}$, and $N_1 = D_{e-1}$, where $p = 2^e - 1$ is a prime. If $e > 3$, then N_4 is a maximal subgroup of N. Thus N is a primitive permutation group on V and has a self-paired suborbit of length 4, which is not possible, see [24] or [17]. Thus $e = 3$, $N = \text{PSL}(2, 7)$, $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, and $N_1 = D_8$. So $X = \text{PSL}(2, 7)$ or $\text{PGL}(2, 7)$.

Suppose that $X = \text{PSL}(2, 7)$. Now write Γ as coset graph $\text{Cos}(X, H, H \{x, x^{-1}\} H)$, where $H = X_1 = D_8$, and $x \in X$ is such that $(H, x) = X$. Let $P = H \cap H^x$. Then $|H : P| = 2$ or 4.

Assume that $|H : P| = 4$. Then Γ is X-arc-transitive and $P = \mathbb{Z}_2$. By Lemma 2.1, we may assume that $x^2 \in P = H \cap H^x$ and x normalises P. If $P \lhd H$, then $P \lhd (H, x) = X = \text{PSL}(2, 7)$, which is a contradiction. Thus P is not normal in H, and so $\mathbb{Z}_4^2 \cong N_H(P) \lhd H$. Since $N_X(P) \cong D_8$, we have $N_X(P) \neq H$. So $N_H(P) \lhd (H, N_X(P)) = X$, which is a contradiction. Thus $|H : P| = 2$, and hence $P \lhd L := (H, H^x)$. We conclude that $L \cong S_4$. Then H and H^x are two Sylow 2-subgroups of L, and hence $H^x = H^y$ for some $y \in L$. Thus $H^{xy^{-1}} = H$, that is, $xy^{-1} \in N_X(H) = H$, hence $x \in H_y \subseteq L$. Then $(x, H) \lhd L \neq X$, which is a contradiction. Thus $X \neq \text{PSL}(2, 7)$, and so $X = \text{PGL}(2, 7)$.

5.2. The case where N is intransitive. Assume now that the minimal normal subgroup $N \lhd X$ is intransitive on $V\Gamma$. We are going to prove that part (3) of Theorem 1.1 occurs.

Lemma 5.5. The minimal normal subgroup N is soluble, and $N \not\leq G$.

Proof. Suppose that N is insoluble. Then $N = T^k$ and $N \not\leq G$, where T is nonabelian simple and $k \geq 1$. Let $Y = NG$. Then by Lemma 2.4 Y is transitive on both of $V\Gamma$ and $E\Gamma$. Let $L \leq N$ be a non-trivial normal subgroup of Y. Then L is intransitive, and since $|V\Gamma|$ is odd, L is not semi-regular on $V\Gamma$. Thus the valency of the quotient graph I_L is less than 4. Since $|V\Gamma|$ is odd, I_L is a cycle of size $m \geq 3$. Let K be the kernel of Y acting on the L-orbits in $V\Gamma$. Then
Let transitively on \(N\) for some elements hold: a nontrivial 2-group. In particular, \(K_1\) is a 2-group. Since \(K = NK_1 \leq Y\) and \(|Y : N|\) is odd, we know that \(K = N\). Thus \(N\) itself is the kernel of \(X\) acting on \(V\Gamma_N\). It follows that \(Y/N\) is the cyclic regular subgroup of \(\text{Aut}^N\) acting on \(V\Gamma_N\). Thus \(Y = NG = N(a) \cong N.Z_m\) for some \(a \in G \setminus N\).

Since \(X_1\) is a nontrivial 2-group, it is easily shown that \(G\cap N\) is a 2'-Hall subgroup of \(N\), and \(N = (G \cap N)N_1\). Then \(G \cap T = G \cap N \cap T\) is a 2'-Hall subgroup of \(T\). By Lemma 2.6, \(T = PSL(2,p)\) for a prime \(p = 2^k - 1\). In particular, \(\text{Out}(T) \cong Z_2\).

By Lemma 5.1, \(C_X(N) = 1\), and hence \(C_Y(N) = 1\). Then \(N\) is the only minimal normal subgroup of \(Y\) and of \(X\). So the element \(a \in Y \leq \text{Aut}(N) = \text{Aut}(T)/S_k\).

Write \(N = T_1 \times \cdots \times T_k\), where \(T_i \cong T\). Then \(\text{Aut}(N) = (\text{Aut}(T_1) \times \text{Aut}(T_2) \times \cdots \times \text{Aut}(T_k)) \times S_k\), and \(a = b\pi\) where \(b \in \text{Aut}(T_1) \times \text{Aut}(T_2) \times \cdots \times \text{Aut}(T_k)\) and \(\pi \in S_k\).

Since \(N\) is a minimal normal subgroup of \(Y\), we have that \(\langle a \rangle\) acts by conjugation transitively on \(\{T_1, T_2, \ldots, T_k\}\), and hence the permutation \(\pi\) is a k-cycle of \(S_k\). Relabeling if necessary, we may assume \(\pi = (12 \ldots k) \in S_k\). Then \(T_1 = T_1\) and \(T_i = T_{i+1}\), where \(i = 1, \ldots, k-1\). Further, \(a^k = b^{a_1} \cdots b^{a_k} \in \text{Aut}(T_1) \times \text{Aut}(T_2) \times \cdots \times \text{Aut}(T_k) = N \rtimes Z_k\). Since \(a^k\) is of odd order, it follows that \(a^k \in N\). Thus \(Y/N \cong Z_k\), and hence \(m = k\). Set \(a^k = t_1t_2 \cdots t_k\), where \(t_i \in T_i\). Since a centralises \(a^k\), we have \(t_1t_2 \cdots t_k = a^k = (a^k)^{a_1} t_1^{a_1} \cdots t_k^{a_k}\). Since \(t_k^{a_i} \in T_k\), it follows that \(t_1 = t_i^a\) and \(t_i^a = t_{i+1}^a\), where \(i = 1, \ldots, k-1\).

Let \(g = t_1^{-1}a\). Then \(T_i = T_i^{g^{-1}} = T_i^{g^{-i}}\) and \(g^i = a^it_i^{-1} \cdots a^{t_{i-1}}\) (reading the subscripts modular \(k\)), where \(2 \leq i \leq k\). In particular, \(g^k = a^k t_k^{-1} t_{k-1}^{-1} \cdots t_1^{-1} = 1\), and so the order of \(g\) is a divisor of \(k\). Noting that \(Y/N \cong Z_k\) and \(N(g) = \langle N, g \rangle = \langle N, t_1^{-1}\rangle = \langle N, a \rangle = Y\), it follows that \(Y = N \leq \langle g \rangle\).

Let \(H_1 = \langle T_1 \rangle\) and \(H_i := H_i^{g^{i-1}}\) for \(1 \leq i \leq k\), and let \(H = H_1 \times \cdots \times H_k\). Then \(H_i \cong D_{2^i}\) is a Sylow 2-subgroup of \(T_i\). \(H\) is a Sylow 2-subgroup of \(N\), and \(H^g = H\). Since \(\Gamma_N\) is a k-cycle and \(Y/N \cong Z_k\), it follows that \(\Gamma\) is not \(Y\)-arc-transitive. Since \(\Gamma\) is \(Y\)-edge-transitive, we may write \(\Gamma\) as a coset graph \(\Gamma = \text{Cos}(Y, H, \{g^ix, (g^ix)^{-1}\}H)\), where \(1 \leq j < k\) and \(x = x_1 \cdots x_k \in N\) for \(x_1 \in T_1\) such that \(|H : (H \cap H^{x_j})| = 2\) and \((H, g^ix) = Y\). Now \(H^{g^ix} = H^{x_1} \times H^{x_2} \times \cdots \times H^{x_k}\) and \(H \cap H^{g^ix} = (H_1 \cap H^{x_1}) \times \cdots \times (H_k \cap H^{x_k})\). Thus we may assume that \((H : (H_1 \cap H^{x_1})) = 2\) and \(H_1 \cap H^{x_1} = H_i\). Then \(H_1 \cap H^{x_i} = H_i\) for \(i = 2, \cdots, k\). Since \(N_2(H_i) = H_i\), we know that \(x_i \in H_i\) for \(i \geq 2\). If \(k > 3\), then \(H_1\) is maximal in \(T_1\), and hence \(H_1 \cap H^{x_1} \leq \langle H_1, H_1^{x_1}\rangle = T_1\), which is a contradiction.

Thus \(N\) is soluble. Then by Lemma 2.4, we have \(N < G\), completing the proof. \(\square\)

We notice that, since \(N\) is intransitive on \(V\Gamma\), the \(N\)-orbits in \(V\Gamma\) form an \(X\)-invariant partition \(V\Gamma_N\). The next lemma determines the structure of \(X\).

Lemma 5.6. Let \(K\) be the kernel of \(X\) acting on \(V\Gamma_N\). Then the following statements hold:

\begin{itemize}
 \item \(K\) is a minimal normal subgroup of \(G\).
 \item \(K\) is a \(1\)-group.
 \item \(K\) is a Sylow 2-subgroup of \(G\).
\end{itemize}
(i) $X/K \cong \mathbb{Z}_m$ or D_{2m} for an odd integer $m > 1$, $K_1 \neq 1$, and Γ is X-arc-transitive if and only if $X/K \cong D_{2m}$;

(ii) $G = N \times R$, $X = N \times ((K_1 \times R)/O)$ and R does not centralise K_1, where $R \cong \mathbb{Z}_m$, and $O = 1$ or \mathbb{Z}_2;

(iii) $N \cong \mathbb{Z}_p^k$ for an odd prime p, and $K_1 \cong \mathbb{Z}_p^l$, where $2 \leq l \leq k$;

(iv) there exist $x_1, \ldots, x_k \in N$ and $\tau_1, \ldots, \tau_k \in K_1$ such that $N = \langle x_1, \ldots, x_k \rangle$,

$\langle x_1, \tau_1 \rangle \cong D_{2p}$ and $K_1 = \langle \tau_1 \rangle \times C_{K_1}(x_i)$ for $1 \leq i \leq k$.

(v) N is the unique minimal normal subgroup of X;

Proof. By Lemma 5.5, $N < G$ is soluble, hence $N \cong \mathbb{Z}_p^k$ for an odd prime p and an integer $k > 1$. In particular, N is semi-regular on $V \Gamma$. Since Γ_N is a cycle of size m say, $X/K \leq \text{Aut} \Gamma_N = D_{2m}$. Thus $K = N \times K_1$, K_1 is a 2-group, and $X/K \cong \mathbb{Z}_m$ or D_{2m}. It follows that $G/N \cong G/K \cong \mathbb{Z}_m$. If $K_1 = 1$, then $K = N$, and hence $G < X$, which contradicts that G is not normal in X. Thus $K_1 \neq 1$. Further, Γ is X-arc-transitive if and only if $X/K \cong D_{2m}$, so we have part (i).

Set $U = N_X(K_1)$. Then $U \neq X$ since K_1 is not normal in X. Noting that $(|N|, |K_1|) = 1$, it follows that $N_{X\cap N}(K/N) = N_{X\cap N}(NK_1/N) = N_{X}(K_1)/N = \text{Aut}(U\cap N)$. Since K/N is normal in X/N, it follows that $X = U_N$. Since $N < X$, $N \cap U < N$. Further $N \cap U < N$ is abelian. Then $N \cap U < N$ is normal. If $N \neq U$, then $K = NK_1 = N \times K_1$, and hence $K_1 < X$, a contradiction. Thus $N \cap U < N$. Further, since N is a minimal normal subgroup of X, we know that $N \cap U = 1$, and hence $K \cap U = NK_1 \cap U = (N \cap U)K_1 = K_1$. Now $X/K = U_N/K = U\cap K/K \cong U/(K \cap U) = U/K_1$, and so $U = (K_1 \times R)/O$, where $\text{Aut} \cong \mathbb{Z}_m$, and $O = 1$ or \mathbb{Z}_2. Then $G = N \times R$, and $X_1 = K_1\langle x_i \rangle$. Further, since G is not normal in X, we conclude that R does not centralise K_1, as in part (ii).

Let $Y = KR = N \times (K_1 \times R)$. Then Y has index at most 2 in X, and Γ is Y-edge-transitive by Lemma 2.4, but it is not Y-arc-transitive. Thus $\Gamma = \text{Cos}(Y, K_1, K_1\{y, y^{-1}\}K_1)$, where $y \in Y$ is such that $(K_1, y) = Y$ and $K_1 \cap K_1^y$ has index 2 in K_1. We may choose $y \in N \times R = G$ such that $Y = \langle \sigma \rangle$ and $y = \sigma x$ where $x \in N$. Then $K_1 \cap K_1^y = K_1 \cap K_1^x$ has index 2 in K_1.

We claim that $K_1 \cap K_1^x = C_{K_1}(x)$. Let $\sigma \in K_1 \cap K_1^x$. Then $\sigma^{-1} \sigma x^{-1} \in K_1$. Since $x \in N$ and $N \not\triangleleft N K_1$, we have $\sigma^{-1} \sigma x^{-1} = \langle \sigma^{-1} \sigma \rangle x^{-1} \in N$. Thus $\sigma^{-1} \sigma x^{-1} \in N \cap K_1 = 1$, and so $\sigma^{-1} = \sigma$. Then σ centralises x. It follows that $K_1 \cap K_1^x \leq C_{K_1}(x)$. Clearly, $C_{K_1}(x) \leq K_1 \cap K_1^x$. Thus $C_{K_1}(x) = K_1 \cap K_1^x$ as claimed.

Since N is a minimal normal subgroup of X and $X = NU$, we have that $N = \langle x \rangle \times \langle x^2 \rangle \times \cdots \times \langle x^k \rangle$ where $\sigma_i \in U$. Then $C_{K_1}(x^{\sigma_i}) = C_{K_1}(x^{\sigma_i}) = \langle K_1 \cap K_1^x \rangle$. The intersection $\cap_{i=1}^k C_{K_1}(x^{\sigma_i}) \leq C_{K_1}(N) = N$, and hence $\cap_{i=1}^k C_{K_1}(x^{\sigma_i}) = 1$. Since each $C_{K_1}(x^{\sigma_i})$ is a maximal subgroup of K_1, the Frattini subgroup $\Phi(K_1) \leq \cap_{i=1}^k C_{K_1}(x^{\sigma_i}) = 1$. Hence K_1 is an elementary abelian 2-group, say $K_1 \cong \mathbb{Z}_2^l$ for some $l \geq 1$. Noting that $\cap_{i=1}^k C_{K_1}(x^{\sigma_i}) = 1$, it follows that $l \leq k$. Suppose that $l = 1$. Then $K_1 \cong \mathbb{Z}_2$ and hence $[Y : G] = 2$. Then $G \leq Y$, and hence $G \leq Y$. So $G < X$, which contradicts the assumption that G is not normal in X. Thus $l > 1$, as in part (iii).

Since $|K_1 : C_{K_1}(x)| = 2$, there is $\tau_1 \in K_1$ such that $K_1 = \langle \tau_1 \rangle \times C_{K_1}(x)$. Let $x_1 = x^{-1} \tau_1$. Then $x_1 \neq 1$, $x_1^{\tau_1} = x_1^{-1}$ and $C_{K_1}(x) = C_{K_1}(x_1)$. Since N is a minimal normal subgroup of $X = NU$, there are $\mu_1, \mu_2, \ldots, \mu_k \in U$ such that $N = \langle x_1^{\mu_1} \rangle \times \cdots \times \langle x_1^{\mu_k} \rangle$. Let $x_i = x_1^{\mu_i}$ and
Let \(\tau_i = x_i^\mu \), where \(i = 1, 2, \ldots, k \). Then \(\mathbb{Z}_2^{k-1} \cong (\mathbb{C}K_1(x_1))^{\mu_i} = \mathbb{C}K_1(x_i) \), and \(K_1 = K_1^{\mu_i} = (\tau_i) \times \mathbb{C}K_1(x_i) \). Further, \(x_i^{\tau_i} = x_i^{\tau_i^\mu} = (x_i^{-1})^\mu = x_i^{-1} \), and hence \(\langle x_i, \tau_i \rangle \cong D_{2p} \), as in part (iv).

Now \(N \cong \mathbb{Z}_k^p \) for an odd prime \(p \) and an integer \(k > 1 \). Suppose that \(X \) has a minimal normal subgroup \(L \neq N \). Then \(N \cap L = 1 \), and \(LK/K \triangleleft X/K \cong \mathbb{Z}_m \) or \(D_{2m} \). It follows that either \(L \leq K \), or \(L \) is cyclic and hence \(|L| \) is an odd prime. If \(L \leq K \), then \(L \) is a 2-group, it is not possible. Hence \(L \) is cyclic. It follows that \(L \) is intransitive and semiregular on \(V \). Then \(\Gamma_L \) is a cycle, and hence \(N \) is isomorphic a subgroup of \(\text{Aut}\Gamma_L \). It follows that \(N \) is cyclic, which is a contradiction. Thus \(N \) is the unique minimal normal subgroup of \(X \), as in part (v). \(\square \)

5.3. **Proof of Theorem 1.1.** If \(G \triangleleft X \), then by Lemma 2.3, we have \(X_1 \leq D_3 \). Thus by Lemma 3.1, \(S = \{a, a^{-1}, a^\tau, (a^\tau)^{-1}\} \) for some involution \(\tau \in \text{Aut}(G) \), as in Theorem 1.1 (1).

We assume that \(G \) is not normal in \(X \) in the following. Let \(M \triangleleft X \) be maximal subject to that \(\Gamma \) is a normal cover of \(\Gamma_M \). By Lemma 2.2, \(M \) is semiregular on \(V\Gamma \) and equals the kernel of \(X \) acting on \(V\Gamma_M \). Thus, setting \(Y = X/M \) and \(\Sigma = \Gamma_M \), \(\Sigma \) is \(Y \)-edge-transitive. Since \(|M| \) is odd, by Lemma 2.3, we have \(M \leq G \). Therefore, \(\Sigma \) is a \(Y \)-edge-transitive Cayley graph of \(G/M \), as in Theorem 1.1 (2).

We note that for the normal subgroup defined in the previous paragraph, we have that \(G \leqslant X \) if and only if \(G/M \triangleleft X/M \). Thus, to complete the proof of Theorem 1.1, we only need to deal with the case where \(M = 1 \), that is, \(\Gamma \) has no non-trivial normal quotients of valency 4. Let \(N \) be a minimal normal subgroup of \(X \). If \(N \) is intransitive on \(V\Gamma \), then by Lemmas 5.5 and 5.6, part (3) of Theorem 1.1 occurs. If \(N \) is transitive on \(V\Gamma \), then by Lemmas 5.2-5.3, Theorem 1.1 (4) occurs. \(\square \)

6. **Proof of Theorem 1.4**

Let \(p \) be an odd prime, and let \(k > 1 \) be an odd integer. Let \(m \) be the largest odd divisor of \(p^k - 1 \), and let

\[
G = N \rtimes \langle g \rangle = \mathbb{Z}_p^k \times \mathbb{Z}_m < \text{AGL}(1, p^k).
\]

It is easily shown that \(\langle g \rangle \) acts by conjugation transitively on the set of subgroups of \(N \) of order \(p \). We first construct a family of Cayley graphs of valency 4 of the group \(G \).

Construction 6.1. Let \(i \) be such that \(1 \leq i \leq m - 1 \), and let \(a \in N \setminus \{1\} \). Let

\[
S_i = \{ag^i, a^{-1}g^i, (ag^i)^{-1}, (a^{-1}g^i)^{-1}\},
\]

\(\Gamma_i = \text{Cay}(G, S_i) \).

The following lemma gives some basic properties about \(G \) and \(\Gamma_i \).

Lemma 6.2. Let \(G \) be the group and let \(\Gamma_i \) be the graphs defined above. Then we have the following statements:

(i) \(\text{Aut}(G) = \text{AGL}(1, p^k) \cong \mathbb{Z}_p^k \rtimes \text{GL}(1, p^k) \);

(ii) \(\Gamma_i \) is edge-transitive, and \(\Gamma_i \) is connected if and only if \(i \) is coprime to \(m \);

(iii) \(\Gamma_i \cong \Gamma_{m^{-1}} \), and if \(np^i \equiv j \pmod{m} \), then \(\Gamma_i \cong \Gamma_j \).

Proof. See [4, Proposition 12.10] for part (i).

Since \(\text{Aut}(G) = \text{AGL}(1, p^k) \) and \(G < \text{AGL}(1, p^k) \), there is an automorphism \(\tau \in \text{Aut}(G) \) such that \(a^\tau = a^{-1} \) and \(g^\tau = g \). Thus \(S_i^\tau = S_i \) and \((ag^i)^\tau = a^{-1}g^i \).
and \((ag')^{-1}r = (a^{-1}g')^{-1}\). It follows that \(\Gamma_i\) is edge-transitive. It is easily shown that \((ag, a^{-1}g') = G\) if and only if \((m, i) = 1\). Hence \(\Gamma_i\) is connected if and only if \(i\) is coprime to \(m\).

Since \(g\) normalises \(N\), there exists \(a' \in N\) such that \((ag')^{-1} = a'g^{-i}\) and \((a^{-1}g')^{-1} = (a')^{-1}g^{-i}\). Thus \(S_i = \{a'g^{-i}, (a')^{-1}g^{-i}, (a'g^{-i})^{-1}, ((a')^{-1}g^{-i})^{-1}\}\). Since \(\text{GL}(1, p^k)\) acts transitively on \(N \setminus \{1\}\), there exists an element \(\rho \in \text{Aut}(G)\) such that \((a')^{\rho} = a\) and \(g^{\rho} = g\). Thus \(S_i^\rho = \{ag^{m-i}, a^{-1}g^{m-i}, (ag^{m-i})^{-1}, (a^{-1}g^{m-i})^{-1}\} = S_j\). So \(\Gamma_i \cong \Gamma_{m-i}\).

Suppose that \(p^ri \equiv j \pmod{m}\) for some \(r \geq 0\). Noting that \(\Gamma_{m-j} \cong \Gamma_j\), we may assume that \(p^ri \equiv j \pmod{m}\). Since \(g \in \text{GL}(1, p^k)\), there exists \(\theta \in \Gamma\text{L}(1, p^k)\) such that \(\theta\) normalises \(N\) and \(g^{\theta} = g^\rho\). Thus \(S_i^\theta = \{a'g^{r-i}, a^{-1}g^{r-i}, (a'g^{r-i})^{-1}, (a^{-1}g^{r-i})^{-1}\}\), where \(a' = a^{\theta} \in N\). Since \(\text{GL}(1, p^k)\) is transitive on \(N \setminus \{1\}\) and fixes \(g\), there exists \(c \in \text{GL}(1, p^k)\) such that \((S_i^\theta)^c = S_j\), and so \(\Gamma_i \cong \Gamma_j\).

In the rest of this section, we aim to prove that every connected edge-transitive Cayley graph of \(G\) of valency 4 is isomorphic to some \(\Gamma_i\), so completing the proof of Theorem 1.4.

Let \(\Gamma = \text{Cay}(G, S)\) be connected, edge-transitive and of valency 4. We will complete the proof of Theorem 1.4 by a series of steps, beginning with determining the automorphism group \(\text{Aut}\Gamma\).

Step 1. \(G\) is normal in \(\text{Aut}\Gamma\), and \(\text{Aut}\Gamma = G \times \text{Aut}(G, S)\).

Suppose that \(G\) is not normal in \(\text{Aut}\Gamma\). Since \(N\) is the unique minimal normal subgroup of \(G\), it follows from Theorem 1.1 that either part (3) of Theorem 1.1 occurs with \(X = \text{Aut}\Gamma\), or \(\Gamma_X\) is a Cayley graph of \(G/N\) isomorphic to one of the graphs in part (4) of Theorem 1.1. Assume that the later case holds. Then \(G/N \cong \mathbb{Z}_a \times \mathbb{Z}_b \times \mathbb{Z}_c \times \mathbb{Z}_d, \mathbb{Z}_e \times \mathbb{Z}_f\). Therefore, as \(G/N \cong \mathbb{Z}_m\), we have that \(G/N \cong \mathbb{Z}_m \cong \mathbb{Z}_5\). By definition, \(m = 5\) is the largest odd divisor of \(p^k - 1\), which is not possible since \(p\) is an odd prime and \(k > 1\) is odd. Thus the former case occurs, and \(\text{Aut}\Gamma = N \rtimes \langle (H \times \langle g \rangle), O \rangle \cong \mathbb{Z}_p^k \times \langle (\mathbb{Z}_2^l \times \mathbb{Z}_m), \mathbb{Z}_n \rangle\), satisfying the properties in part (3) of Theorem 1.1. In particular, \(2 \leq l \leq k\), and \(C_H(N) = 1\).

By Theorem 1.1 (3), there exist \(\tau_0 \in H \setminus \{1\}\) and \(z_0 \in N\) such that \(H = \langle \tau_0 \rangle \times C_H(z_0)\). It follows that for each \(\sigma \in H\), we have \(z_0^\sigma = z_0\) or \(z_0^{-1}\). Since \(g\) normalises \(H\) and \(\langle g \rangle\) acts transitively on the set of subgroups of order \(p\), it follows that for each \(x \in N\) and each \(\sigma \in H\), we have \(x^\sigma = x\) or \(x^{-1}\).

Suppose that there exist \(x_1, x_2 \in N \setminus \{1\}\) such that \(x_1^\sigma = x_1\) and \(x_2^\sigma = x_2^{-1}\). Then \((x_1x_2)^\sigma = x_1x_2^{-1}\), which equals neither \(x_1x_2\) nor \((x_1x_2)^{-1}\), a contradiction. Thus, as \(\sigma\) does not centralise \(N\), we have \(x^\sigma = x^{-1}\) for all \(x \in N\). Since \(H \cong \mathbb{Z}_2^l\) with \(l \geq 2\), there exists \(\tau \in H \setminus \{\sigma\}\). Then similarly, \(\tau\) inverts all elements of \(N\), that is, \(x^\tau = x^{-1}\) for all elements \(x \in N\). However, now \(x^\sigma \tau = x\) for all \(x \in N\), and hence \(\sigma \tau \in C_H(N) = 1\), which is a contradiction.

Therefore, \(G\) is normal in \(\text{Aut}\Gamma\), and by Lemma 2.3, we have that \(\text{Aut}\Gamma = G \times \text{Aut}(G, S)\).

Step 2. \(\text{Aut}\Gamma = G \times \langle (\sigma) = \mathbb{Z}_p^k \times \langle (\sigma) \times \langle f \rangle \rangle \cong N \times \mathbb{Z}_m \cong G \times \mathbb{Z}_2,\) and \(S = \{a^f, a^{-1}f, (a^{-1}f)^{-1}, (a^f)^{-1}\}\) where \(a \in N\) and \(f \in G\) has order \(m\) such that \(a^2 = a^{-1}\); in particular, \(\Gamma\) is not arc-transitive.
By Lemma 6.2, we have $\text{Aut}(G) \cong \text{AGL}(1, p^k) \cong N \rtimes (Z_{q^r-1} \times Z_q)$. Since k is odd, $\text{Aut}(G)$ has a cyclic Sylow 2-subgroup, and thus all involutions of $\text{Aut}(G)$ are conjugate. It is easily shown that every involution of $\text{Aut}(G)$ inverts all elements of N. Since Γ is edge-transitive and $\text{Aut} \Gamma = G \rtimes \text{Aut}(G, S)$, $\text{Aut}(G, S)$ has even order. On the other hand, since G is of odd order, by Lemma 2.3, we have that $\text{Aut}(G, S)$ is isomorphic to a subgroup of S_N. Further, since a Sylow 2-subgroup of $\text{Aut}(G)$ is cyclic, we have that $\text{Aut}(G, S) = \langle \sigma \rangle \cong \mathbb{Z}_2$ or \mathbb{Z}_4. It follows that σ fixes an element of G of order m, say $f \in G$ such that $o(f) = m$ and $f^m = f$. Then $G = N \rtimes \langle f \rangle$, and $X = \text{Aut} \Gamma = G \rtimes \langle f, \sigma \rangle$.

Since Γ is connected, $\langle \sigma \rangle = G$ and $\text{Aut}(G, S)$ is faithful on S. Hence we may write $S = \{x, y, x^{-1}, y^{-1}\}$ such that either $o(\sigma) = 2$ and $(x, y)^\sigma = (y, x)$, or $o(\sigma) = 4$ and $(x, y)^\sigma = (y, x^{-1})$, refer to Lemma 3.1. Now $x = af^i$, where $a \in N$ and i is an integer. Suppose that $o(\sigma) = 4$. Then $y = x^\sigma = (af^i)^\sigma = a^\sigma f^i$, and $a f^{-i} = f^{-i} a^{-1} = (af^i)^{-1} = x^{-1} = x^\sigma = a^\sigma f = a^{-1} f^i$. It follows that $f^{2i} = 1$, and since f has odd order, $f^i = 1$. Thus $x = a$ and $y = x^\sigma = a^\sigma$, belonging to N, and so $\langle S \rangle \leq N < G$, which is a contradiction. Thus σ is an involution, and so $(x, y)^\sigma = (y, x)$, $x = af^i$, and $y = x^\sigma = a^\sigma f^i = a^{-1} f^i$. In particular, Γ is not arc-transitive, and $S = \{af^i, a^{-1} f^i, (af^i)^{-1}, (a^{-1} f^i)^{-1}\}$.

Step 3. $\Gamma \cong \Gamma_j$ for some j such that $1 \leq j \leq \frac{m-1}{2}$ and $(j, m) = 1$.

By Step 2, we may assume that $\text{Aut} \Gamma = N \rtimes \langle f, \sigma \rangle \leq \text{AGL}(1, p^k)$. Since $g \in G$ has order m, it follows from Hall’s theorem that there exists $b \in N$ such that $g^b \in \langle f, \sigma \rangle$. So $f^{b^{-1}} = g^r$ for some integer r. Let $\tau = \sigma^{b^{-1}}$. Then $(g, \tau) \cong \langle f, \sigma \rangle \cong \mathbb{Z}_{2m}$, and $G = N \rtimes \langle g \rangle$ and $\text{Aut} \Gamma = N \rtimes \langle g, \tau \rangle$. Further, $T := S^{b^{-1}} = (ag^r, a^{-1} g^r, (ag^r)^{-1}, (a^{-1} g^r)^{-1})$. Let $j \equiv ir \pmod m$ and $1 \leq j \leq m - 1$. Then $T = (ag^j, a^{-1} g^j, (ag^j)^{-1}, (a^{-1} g^j)^{-1})$, and $(j, m) = 1$ as $\Gamma \cong \text{Cay}(G, T)$ is connected. By Lemma 6.2 (iii), $\Gamma_i \cong \Gamma_{m-j}$, and so the statement in Step 3 is true.

Step 4. Let Γ_i and Γ_j be as in Construction 6.1 with $(i, m) = (j, m) = 1$. Then $\Gamma_i \cong \Gamma_j$ if and only if $p^i \equiv j \pmod m$ for some $r \geq 0$.

By Lemma 6.2, we only need to prove that if $\Gamma_i \cong \Gamma_j$ then $p^i \equiv j \pmod m$ for some $r \geq 0$. Thus suppose that $\Gamma_i \cong \Gamma_j$. By Step 2, we have $\text{Aut} \Gamma_i \cong \text{Aut} \Gamma_j \cong G \rtimes \mathbb{Z}_2$. It follows that Γ_i and Γ_j are so-called CI-graphs, see [13, Theorem 6.1]. Thus $S_i = S_j = \Gamma$ for some $\gamma \in \text{Aut}(G)$. Since N is a characteristic subgroup of G, this γ induces an automorphism of $G/N = \langle \gamma \rangle$ such that $\gamma^i = S_j \in S_i$, where $S_i = \{\gamma^i, \gamma^{-i}\}$ and $S_j = \{\gamma^j, \gamma^{-j}\}$ are the images of S_i and S_j under $G \to G/N$, respectively. Thus $\langle \gamma^i \rangle = \langle \gamma^j \rangle$ or $\langle \gamma^i \rangle = \langle \gamma^{-j} \rangle$. Since $\text{Aut}(G) = \text{AGL}(1, p^k)$, it follows that for each element $\rho \in \text{Aut}(G)$, we have $g^\rho = cg^{\rho^c}$ for some $c \in N$ and some integer r with $0 \leq r \leq k-1$. Thus $\langle \gamma^i \rangle = \langle \gamma^{r+1} \rangle$, and hence $p^i \equiv j \pmod m$.

This completes the proof of Theorem 1.4. \hfill \square

References

School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

E-mail address: li@maths.uwa.edu.au

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

E-mail address: zaipinglu@sohu.com