
The Real-rootedness of Generalized Narayana Polynomials
related to the Boros-Moll Polynomials

Herman Z.Q. Chen1, Arthur L.B. Yang2, Philip B. Zhang3

1,2Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P. R. China

3College of Mathematical Science
Tianjin Normal University, Tianjin 300387, P. R. China

Email: 1zqchern@163.com, 2yang@nankai.edu.cn, 3zhangbiaonk@163.com

Abstract. In this paper, we prove the real-rootedness of a family of generalized Narayana
polynomials, which arose in the study of the infinite log-concavity of the Boros-Moll
polynomials. We establish certain recurrence relations for these Narayana polynomials,
from which we derive the real-rootedness. To prove the real-rootedness, we use a sufficient
condition, due to Liu and Wang, to determine whether two polynomials have interlaced
zeros. The recurrence relations are verified with the help of the Mathematica package
HolonomicFunctions.
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1 Introduction

For any nonnegative integers n and m, let

Nn(x) =
1

n+ 1

n∑
k=0

(
n+ 1

k

)(
n+ 1

k + 1

)
xk, (1)

Nn,m(x) =
n∑

k=0

((
n

k

)(
m

k

)
−
(

n

k + 1

)(
m

k − 1

))
xk. (2)

The polynomial Nn(x) is the classical Narayana polynomial. It is well known that Nn(x)
has only real zeros. Moreover, it is easy to verify that both Nn,n(x) and Nn+1,n(x) are just
the polynomial Nn(x). While, it seems that the polynomials Nn,m(x) were not well studied
for general n and m. In this paper, we shall prove that the polynomials Nn,m(x) have
only real zeros for any n and m. Let us first review some backgrounds of the polynomials
Nn,m(x).

The polynomials Nn,m(x) arose in the study of the infinite log-concavity of the Boros-
Moll polynomials. The Boros-Moll polynomials were introduced by Boros and Moll [1]
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in their study of a quartic integral, and they obtained the following expression for the
Boros-Moll polynomials:

Pn(x) = 2−2n
∑
j

2j

(
2n− 2j

n− j

)(
n+ j

j

)
(x+ 1)j.

Recall that a finite nonnegative sequence {ak}nk=0 is said to be log-concave if

a2k − ak+1ak−1 ≥ 0, for 0 ≤ k ≤ n,

where, for convenience, we set a−1 = 0 and an+1 = 0. We say that it is infinitely log-
concave if for any i ≥ 1 the i-th iterative sequence {Li(ak)}nk=0 is nonnegative, where L
is the operator acting on {ak}nk=0 as follows

L(ak) = a2k − ak+1ak−1, for 0 ≤ k ≤ n.

We say that a polynomial

f(x) =
n∑

k=0

akx
k

is infinitely log-concave if its coefficient sequence {ak}nk=0 is infinitely log-concave. Boros
and Moll proposed the following conjecture.

Conjecture 1.1 ([1]). The polynomial Pn(x) is infinitely log-concave.

The log-concavity of Pn(x) was first conjectured by Moll [11], and then was proved by
Kauers and Paule [7]. The 2-fold log-concavity of Pn(x) was proved by Chen and Xia [5].
Brändén [2] proposed an innovative approach to the higher-fold log-concavity of Pn(x).
He conjectured the real-rootedness of some variations of Pn(x), from which its 3-fold log-
concavity can be deduced. Brändén’s conjectures were later confirmed by Chen, Dou and
Yang [4]. While Conjecture 1.1 is open, Brändén [2] has proved the infinite log-concavity
of real-rooted polynomials, which was independently conjectured by Stanley, McNamara
and Sagan [10], and Fisk [6].

Theorem 1.2 ([2]). If

f(x) =
n∑

k=0

akx
k

is a real-rooted polynomial with nonnegative coefficients, then so is the polynomial

n∑
k=0

(a2k − ak−1ak+1)x
k.

2



The well known Newton’s inequality states that if a polynomial f(x) has only real
zeros, then it must be log-concave. Therefore, Theorem 1.2 implies the infinite log-
concavity of the real-rooted polynomials. Motivated by Brändén’s theorem, we are led to
study the real-rootedness of the following polynomial:

Qn(x) =
n∑

k=0

(dk(n)2 − dk−1(n)dk+1(n))xk,

where

dk(n) = 2−2n
n∑

j=k

2j

(
2n− 2j

n− j

)(
n+ j

j

)(
j

k

)
is the coefficient of xk in the Boros-Moll polynomial Pn(x). We have the following con-
jecture.

Conjecture 1.3. For any n ≥ 1, the polynomial Qn(x) has only real zeros.

Since the log-concavity of Pn(x) is known, by Theorem 1.2, Conjecture 1.3 would imply
Conjecture 1.1. Note that the polynomial Qn(x) may be rewritten as

Qn(x) =
n∑

i=0

n∑
j=0

2i+j

(
2n− 2i

n− i

)(
2n− 2j

n− j

)(
n+ i

i

)(
n+ j

j

)
Ni,j(x),

where Ni,j(x) is the Narayana polynomial defined by (2). The numerical evidence suggests
that the polynomial Nn,m(x) has only real zeros for any n and m. Our main result is as
follows.

Theorem 1.4. For any m,n ≥ 0, the polynomial Nm,n(x) has only real zeros.

The remainder of this paper is organized as follows. In the next section, we shall give
an overview of some tools which will be used to prove Theorem 1.4. In Section 3, we shall
establish some interlacing property concerning the polynomials Nn,m(x), from which we
derive Theorem 1.4.

2 Preliminaries

The results contained in this section serve as a reference point used in Section 3.

Let us first introduce the definition of interlacing. Given two real-rooted polynomials
f(x) and g(x) with positive leading coefficients, We say that g(x) interlaces f(x), denoted
g(x) � f(x), if

· · · ≤ s2 ≤ r2 ≤ s1 ≤ r1,
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where {ri} and {sj} are the sets of zeros of f(x) and g(x), respectively. We say that g(x)
strictly interlaces f(x), denoted g(x) ≺ f(x), if, in addition, all the inequalities concerned
are strict.

Liu and Wang [9] obtained the following sufficient condition to determine whether two
polynomials have interlaced zeros.

Theorem 2.1 ([9, Theorem 2.3]). Let F (x), f(x), g1(x), . . . , gk(x) be polynomials with
real coefficients satisfying the following conditions.

(a) There exist some polynomials φ(x), ϕ1(x), . . . , ϕk(x) with real coefficients such that

F (x) = φ(x)f(x) + ϕ1(x)g1(x) + · · ·+ ϕk(x)gk(x) (3)

and degF (x) = deg f(x) or degF (x) = deg f(x) + 1;

(b) The polynomials f(x), g1(x), . . . , gk(x) are real-rooted polynomials, and moreover
gj(x) � f(x) for each 1 ≤ j ≤ k;

(c) The leading coefficients of F (x) and gj(x) have the same sign for each 1 ≤ j ≤ k.

Suppose that ϕj(r) ≤ 0 for each j and each zero r of f(x). Then F (x) has only real zeros
and f(x) � F (x).

We shall use the above result to prove the real-rootedness of Nn,m(x). The key point is
to prove certain recurrence relations related to these polynomials. As will be shown later,
the coefficients of these recurrence relations look complicated. Thanks to Zeilberger’s
holonomic systems approach to special function identities, Koutschan (private commu-
nication) pointed out that these recurrence relations can be easily verified by using the
Mathematica package HolonomicFunctions, see [8, 13]. The Ore algebras introduced in
[12] serve as a unifying framework to represent such recurrence relations. These algebras
were obtained by applying Ore extensions to some base rings, also called Ore polyno-
mial rings. Let Sn denote the shift operator with respect to n. Let R(n, x) denote the
field of rational functions in n and x over the field R of real numbers. The Ore algebra
used throughout this paper could be considered as R(n, x)〈Sn〉, which consists of all lin-
ear operators of the form

∑r
i=0 piS

i
n, where r ≥ 0 and pi ∈ R(n, x). Suppose that the

polynomial sequence {fn(x)}n≥0 satisfies certain recurrence relation
∑k

i=0 aifi+n(x) = 0,
where ai ∈ R(n, x), and then the Ore polynomial of such a recurrence relation is given
by
∑k

i=0 aiS
i
n. For each f ∈ R(n, x), the annihilator of f with respect to R(n, x)〈Sn〉 is

defined by
AnnR(n,x)〈Sn〉(f) = {P ∈ R(n, x)〈Sn〉 | P (f) = 0},

which is a left ideal in R(n, x)〈Sn〉. For more information on the Ore algebras and the
Ore polynomials, see Koutschan [8] and Ore [12].
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To be self-contained, we give an example to illustrate the use of this package. It is well
known that the classical Narayana polynomials Nn(x) given in (1) satisfy the following
recurrence relation:

(n+ 3)Nn+1(x) = (2n+ 3)(x+ 1)Nn(x)− n(x− 1)2Nn−1(x).

This can be proved in the following way by using the package:

1. Convert the above recurrence to an Ore polynomial in the Ore algebra:

In[1]:= rec = ToOrePolynomial[(2 ∗n+3) ∗ (x+1) ∗ f[n]−n ∗ (x− 1)2 ∗ f[n− 1]−
(n + 3) ∗ f[n + 1], f[n]]

Out[1]= {(4 + n)S2
n + (−5− 2n− 5x− 2nx)Sn + (1 + n− 2x− 2nx+ x2 + nx2)}

2. Generate a (Gröebner) basis of the annihilator A of the input (i.e., the set of all
recurrence/differential relations that the input satisfies) using the command Anni-
hilator:

In[2]:= ann = Annihilator[Sum[Binomial[n+1, k]∗Binomial[n+1, k+1]∗xk/(n+
1), {k, 0, n}],S[n]]

Out[2]= {(4 + n)S2
n + (−5− 2n− 5x− 2nx)Sn + (1 + n− 2x− 2nx+ x2 + nx2)}

3. Reduce the Ore polynomial rec modulo A using the command OreReduce. If it
returns 0, then rec is an element of the set A and hence the recurrence relation is
valid.

In[3]:= OreReduce[rec, ann]

Out[3]= 0

3 Proof

The objective of this section is to give a proof of Theorem 1.4, namely the real-rootedness
of the polynomial Nn,m(x). We first derive certain recurrence relations for these polyno-
mials. For nonnegative integers t and n, let

N (t)
n (x) = Nn,n+t(x), N

(t)

n (x) = Nn+t,n(x). (4)

The polynomials N (t)
n (x) satisfy the following recurrence relation.
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Theorem 3.1. For nonnegative integers t and n ≥ 1, we have

N
(t)
n+1(x) =

a0 + a1x+ a2x
2

(n+ t+ 3)(n+ 1)(c0 + c1x)
N (t)

n (x)− n(n+ t)(x− 1)2(b0 + b1x)

(n+ t+ 3)(n+ 1)(c0 + c1x)
N

(t)
n−1(x),

(5)

where

a0 = −(2n3 + (2t+ 5)n2 + (2t+ 3)n),

a1 = (2t(t+ 2)n3 + 3t(t+ 2)2n2 + (t(t+ 2)(t2 + 5t+ 5))n

+ (t(t+ 1)(t+ 2)(t+ 3)/2)),

a2 = (t+ 1)((2t+ 2)n3 + (3t2 + 9t+ 5)n2 + (2t+ 3)(t2 + 3t+ 1)n

+ t(t+ 1)(t+ 2)(t+ 3)/2),

b0 = −(n+ 1),

b1 = (t+ 1)2n+ (t+ 1)(t2 + 4t+ 2)/2,

c0 = −n,
c1 = (t+ 1)2n+ t(t+ 1)(t+ 2)/2.

Proof. We shall prove an equivalent form of this recurrence relation, which is obtained
by multiplying (n+ t+ 3)(n+ 1)(c0 + c1x) on both sides of (5). This could be converted
into an Ore polynomial as follows:

In[4]:= rec = ToOrePolynomial[(a0 + a1 ∗ x + a2 ∗ x2) ∗ f[n] − (n ∗ (n + t) ∗ (x −
1)2 ∗ (b0 + b1 ∗ x)) ∗ f[n − 1] − (n + t + 3) ∗ (n + 1) ∗ (c0 + c1 ∗ x) ∗ f[n +
1] /. MapThread[Rule, {{a0, a1, a2, b0, b1, c0, c1}, {−(2 ∗n3 +(2 ∗ t+5) ∗n2 +
(2∗ t+3)∗n), 2∗ t∗ (t+2)∗n3+3∗ t∗ (t+2)2 ∗n2+(t∗ (t+2)∗ (t2+5∗ t+5))∗
n+t∗(t+1)∗(t+2)∗((t+3)/2), (t+1)∗((2∗t+2)∗n3+(3∗t2+9∗t+5)∗n2+
(2∗ t+3)∗ (t2+3∗ t+1)∗n+ t∗ (t+1)∗ (t+2)∗ ((t+3)/2)),−(n+1), (t+1)2 ∗
n+(t+1) ∗ ((t2 +4 ∗ t+2)/2),−n, (t+1)2 ∗n+ t ∗ (t+1) ∗ ((t+2)/2)}}], f[n]];

Then compute a (Gröebner) basis ann of the set of all recurrence/differential relations
that N (t)

n (x) satisfies, and reduce the Ore polynomial rec modulo ann:

In[5]:= ann = Annihilator[Sum[(Binomial[n, k] ∗ Binomial[n + t, k] − Binomial[n, k +
1] ∗ Binomial[n + t, k − 1]) ∗ xk, {k, 0, n}],S[n]];

In[6]:= OreReduce[rec, ann]

Out[6]= 0

We have the desired output. This completes the proof.

Next we come to proving the real-rootedness of N (t)
n (x).
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Theorem 3.2. For any t ≥ 0 and n ≥ 0, the polynomial N (t)
n (x) has only real zeros, and

moreover, we have N (t)
n (x) � N

(t)
n+1(x).

Proof. We use induction on n. It is straightforward to verify that

N
(t)
0 (x) = 1, N

(t)
1 (x) = 1 + (t+ 1)x, N

(t)
0 (x) � N

(t)
1 (x).

Assume that N
(t)
n−1(x) � N (t)

n (x). We see that the recurrence relation (5) is of the form
(3) in Theorem 2.1 with k = 1, where

F (x) = N
(t)
n+1(x),

f(x) = N (t)
n (x),

g1(x) = N
(t)
n−1(x),

φ(x) =
a0 + a1x+ a2x

2

(n+ t+ 3)(n+ 1)(c0 + c1x)
,

ϕ1(x) = − n(n+ t)(x− 1)2(b0 + b1x)

(n+ t+ 3)(n+ 1)(c0 + c1x)
.

Here, a0, a1, a2, b0, b1, c0, c1 are given by (5). Note that for any n, t ≥ 0 the coefficients of

N
(t)
n+1(x) are nonnegative, since, for any 0 ≤ k ≤ n, the coefficient of xk in N

(t)
n+1(x) is

[xk]N
(t)
n+1(x) =

(
n

k

)(
n+ t

k

)
−
(

n

k + 1

)(
n+ t

k − 1

)
=

(
1− k

k + 1
· n− k
n− k + t+ 1

)(
n

k

)(
n+ t

k

)
> 0.

It is clear that for any x ≤ 0, we have ϕ1(x) ≤ 0. By Theorem 2.1, the polynomial

N
(t)
n+1(x) is real-rooted, and moreover N (t)

n (x) � N
(t)
n+1(x).

We have the following recurrence relation for N
(t)

n (x).

Theorem 3.3. For nonnegative integers t and n ≥ 1, we have

N
(t)

n+1(x) =
a0 + a1x+ a2x

2

(n+ t+ 1)(n+ 3)(c0 + c1x)
N

(t)

n (x)− n(n+ t)(x− 1)2(b0 + b1x)

(n+ t+ 1)(n+ 3)(c0 + c1x)
N

(t)

n−1(x),

(6)
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where

a0 = −(2n+ 3)(n+ t)(n+ t+ 1),

a1 = 3t(t− 2)(t+ 1)2/2 + t(t− 2)(t2 + 7t+ 5)n

+ 3t(t− 2)(t+ 2)n2 + 2t(t− 2)n3

a2 = t2(t− 1)(t+ 1)2/2 + (t− 1)(2t3 + 3t2 + t− 3)n

+ (t− 1)(3t2 + 3t− 5)n2 + 2(t− 1)2n3,

b0 = −n− 1− t,
b1 = (t− 1)2n+ (t− 1)t2/2 + (t− 1)2,

c0 = −n− t,
c1 = (t− 1)2n+ (t− 1)t2/2.

Proof. The proof is similar to that of Lemma 3.1. We need to prove an equivalent form
of (6) obtained by multiplying (n + t + 1)(n + 3)(c0 + c1x) on both sides. This could be
converted into an Ore polynomial as follows:

In[7]:= rec = ToOrePolynomial[(a0 + a1 ∗ x + a2 ∗ x2) ∗ f[n] − (n ∗ (n + t) ∗ (x −
1)2 ∗ (b0 + b1 ∗ x)) ∗ f[n − 1] − (n + 3) ∗ (n + t + 1) ∗ (c0 + c1 ∗ x) ∗ f[n +
1] /. MapThread[Rule, {{a0, a1, a2, b0, b1, c0, c1}, {−(2 ∗n+3) ∗ (n+ t) ∗ (n+
t+ 1), 3 ∗ t ∗ (t− 2) ∗ (t+ 1)2/2 + t ∗ (t− 2) ∗ (t2 + 7t+ 5) ∗ n+ 3 ∗ t ∗ (t− 2) ∗
(t+2) ∗n2 +2 ∗ t ∗ (t− 2) ∗n3, t2 ∗ (t− 1) ∗ (t+1)2/2+ (t− 1) ∗ (2 ∗ t3 +3 ∗ t2 +
t− 3) ∗ n+ (t− 1) ∗ (3 ∗ t2 + 3 ∗ t− 5) ∗ n2 + 2 ∗ (t− 1)2 ∗ n3,−n− 1− t, (t−
1)2 ∗ n + (t− 1) ∗ t2/2 + (t− 1)2,−n− t, (t− 1)2 ∗ n + (t− 1) ∗ t2/2}}], f[n]];

Then compute a (Gröebner) basis ann of the set of all recurrence/differential relations

that N
(t)

n (x) satisfies, and reduce the Ore polynomial rec modulo ann:

In[8]:= ann = Annihilator[Sum[(Binomial[n+t, k]∗Binomial[n, k]−Binomial[n+t, k+
1] ∗ Binomial[n, k − 1]) ∗ xk, {k, 0, n + t}],S[n]];

In[9]:= OreReduce[rec, ann]

Out[9]= 0

The output is 0, as desired. This completes the proof.

We now prove the real-rootedness of N
(t)

n (x).

Theorem 3.4. For any n, t ≥ 0, the polynomial N
(t)

n (x) has only real zeros. If t ≥ 2,

then N
(t)

n (x) has one and only one positive zero.

Proof. Note that both the polynomials N
(0)

n (x) and N
(1)

n (x) are the classical Narayana
polynomial, which is known to be real-rooted.
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We proceed to consider the case of t ≥ 2. We first prove that N
(t)

n (x) has one and

only one positive zero. Note that for any n ≥ 0 and t ≥ 2, N
(t)

n (x) is polynomial in x of

degree n+ 1, and for any 0 ≤ k ≤ n+ 1, the coefficient of xk in N
(t)

n (x) is(
n+ t

k

)(
n

k

)
−
(
n+ t

k + 1

)(
n

k − 1

)
=

n+ 1− kt
(n+ 1)(k + 1)

(
n+ t

k

)(
n+ 1

k

)
.

Therefore, the number of changes in sign of the coefficients is 1. By Descartes’ rule, the

polynomial N
(t)

n (x) has at most one positive zero. Moreover, we see that

[x0]N
(t)

n (x) = 1 > 0, [xn+1]N
(t)

n (x) = −
(
n+ t

n+ 2

)
< 0.

Thus, the polynomial N
(t)

n (x) has one and only one positive zero.

Next we claim that N
(t)

n (x) has n negative zeros, and moreover, for any n ≥ 1,

r
(n+1)
n+1 < r(n)n < r(n+1)

n < r
(n)
n−1 < · · · < r

(n)
2 < r

(n+1)
2 < r

(n)
1 < r

(n+1)
1 < 0,

where {r(n)k }nk=0 and {r(n+1)
k }n+1

k=0 are the negative zeros ofN
(t)

n (x) and N
(t)

n+1(x) respectively.

Before proving the above claim, let us note the following property: for any x < 0, n ≥ 1
and t ≥ 2, clearly we have

− n(n+ t)(x− 1)2(b0 + b1x)

(n+ t+ 1)(n+ 3)(c0 + c1x)
< 0.

To prove the claim, we use induction on n. Let us first prove the base case of n = 1. We

already showed that N
(t)

1 (x) has one and only one positive zero. Since N
(t)

1 (x) is of degree

2 and [x0]N
(t)

1 (x) = 1, it also has one negative zero r
(1)
1 . By the recurrence (6), we see that

N
(t)

2 (r
(1)
1 ) < 0 since N

(t)

0 (r
(1)
1 ) > 0. Moreover, we have N

(t)

2 (0) = 1 > 0 and N
(t)

2 (−∞) > 0.

Thus, N
(t)

2 (x) has two negative zeros r
(2)
1 , r

(2)
2 and moreover r

(2)
2 < r

(1)
1 < r

(2)
1 < 0, as

claimed.

Assume that the claim is true for n. We proceed to show that it is also true for n+ 1.
From (6) we deduce that

(−1)kN
(t)

n+1(r
(n)
k ) > 0, for any 1 ≤ k ≤ n.

Moreover, we have N
(t)

n+1(0) = 1 > 0 and (−1)n+1N
(t)

n+1(−∞) > 0. Thus, the polynomial

N
(t)

n+1(x) has n+ 1 negative zeros {r(n+1)
k }n+1

k=0 , and moreover, for each 1 ≤ k ≤ n, we have

r
(n+1)
k+1 < r

(n)
k < r

(n+1)
k , as claimed. This completes the proof.

Combining Theorems 3.2 and 3.4, we complete the proof of Theorem 1.4.
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