Optimal Strong (κ, d)-Orientation of Complete κ-Partite Graphs

报告人：缪惠芳

2006年8月
Optimal Strong \((\kappa, d)\)-Orientation of Complete \(k\)-Partite Graphs

一 Introduction

二 Proof of the main result

三 Examples
1 Introduction

♦ The familiar distance $d(u,v)$ between two vertices u and v in a connected graph G is the length of a shortest (u,v)-path in G. Equivalently, the distance is the minimum size of a connected subgraph of G containing u and v.

♦ Using this equivalent formulation of distance, this concept was extended by Chartrand et al.[2] to strongly connected digraphs, in particular to strong oriented graphs.
Let u, v be vertices of strong oriented graph D. The strong distance $sd_D(u, v)$ (or simply $sd(u, v)$) between u and v is defined as the minimum size of a strong sub-digraph of D containing u and v.

In Figure 1, $sd(w, v) = 3$, $sd(u, w) = 5$, $sd(u, x) = 6$.

Figure 1: Strong distance in a strong digraph.
The strong eccentricity $se_D(v)$ (or simply $se(v)$) of a vertex v in a strong oriented graph D is

$$se(v) = \max\{sd(v, x) \mid x \in V(D)\}.$$

The strong diameter $sdiam(D)$ of D is

$$sdiam(D) = \max\{se(v) \mid v \in V(D)\}.$$

For a connected graph G, Lai et al. [5] defined the lower orientable strong diameter $sdiam(G)$ of G as

$$sdiam(G) = \min\{sdiam(D) \mid D \text{ is a strong orientation of } G\}.$$
Chartrand et al. gave an upper bound on the strong diameter of a strong oriented graph D.

Theorem 1.1: (Chartrand et al.[2]) If D is a strong oriented graph of order $n \geq 3$, then

$$sdiam(D) \leq \left\lfloor \frac{5(n - 1)}{3} \right\rfloor.$$

Dankelmann et al. showed the strong diameter and strong connectivity κ of a strong oriented graph satisfy the following inequality.

Theorem 1.2: (Dankelmann et al.[4]) Let D be a strong oriented graph of order n and $\kappa(D) = \kappa$, then

$$sdiam(D) \leq \frac{5}{3} \left(1 + \frac{n - 2}{\kappa}\right).$$
Let $K(m_1, m_2, \ldots, m_k)$ be a complete k-partite graph with vertex partition of cardinalities m_1, m_2, \ldots, m_k, where $k \geq 2$.

In [6], the present authors gave the lower orientable strong diameter of complete k-partite graphs.

Theorem 1.3: (Miao and Guo [6]) Let $2 \leq m_1 \leq m_2$. Then

$$sdiam(K_{m_1,m_2}) = \begin{cases} 4, & \text{if } m_1 \leq m_2 \leq \left(\frac{m_1}{[m_1/2]}\right), \\ 6, & \text{if } m_2 > \left(\frac{m_1}{[m_1/2]}\right). \end{cases}$$

Theorem 1.4: (Miao and Guo [6]) Let $k \geq 3$, $1 \leq m_1 \leq m_2 \leq \cdots \leq m_k$, where $m_k \geq 2$, and let $m = m_1 + m_2 + \cdots + m_{k-1}$. Then

$$sdiam(K(m_1, m_2, \ldots, m_k)) = \begin{cases} 4, & \text{if } \left(\frac{m}{[m/2]}\right) \geq m_k, \\ 5, & \text{if } \left(\frac{m}{[m/2]}\right) < m_k. \end{cases}$$
For vertex-strong connectivity of a digraph D (denoted by $\kappa(D)$), Thomassen [7] posed the following conjecture.

Conjecture 1.5: (Thomassen [7]) Every $2k$-strong digraph has a k-strong orientation.

We will give a weaker form of this conjecture.

Conjecture 1.6: Every m-connected graph has a $\lfloor m/2 \rfloor$-strong orientation.
Let $k \geq 2$, $m_1 \leq m_2 \leq \cdots \leq m_k$ and $m = m_1 + m_2 + \cdots + m_{k-1} \geq 2$. Then $\kappa(K(m_1, m_2, \ldots, m_k)) = \delta(K(m_1, m_2, \ldots, m_k)) = m$. We have known that for any orientation K of $K(m_1, m_2, \ldots, m_k)$, $\kappa(K) \leq \min\{\delta^-(K), \delta^+(K)\} \leq \lfloor m/2 \rfloor = \lfloor \kappa(K(m_1, m_2, \ldots, m_k))/2 \rfloor$.

Note that there exists some orientation of $K(m_1, m_2, \ldots, m_k)$ which satisfies Conjecture 1.6, that is, the upper bound $\lfloor m/2 \rfloor$ can be obtained, but its strong diameter is more than the lower orientable strong diameter of $K(m_1, m_2, \ldots, m_k)$. Furthermore, there exists some orientation K of $K(m_1, m_2, \ldots, m_k)$ in which $s\text{diam}(K)$ equals to the lower orientable strong diameter of $K(m_1, m_2, \ldots, m_k)$, but its strong connectivity is less than $\lfloor m/2 \rfloor$.
The digraph D_1 shown in Figure 2 is a strong orientation of $K(2, 2, 2)$. By the orientation of D_1, we know that $\kappa(D_1) = 2 = \lceil \kappa(K(2, 2, 2))/2 \rceil$. But vertices u and v cannot be contained in any directed 3-cycle or 4-cycle in D_1. Furthermore, by Theorem 1.4, we have $sdiam(K(2, 2, 2)) = 4$. Hence, $sdiam(D_1) \geq sd(u, v) > sdiam(K(2, 2, 2))$.

Figure 2: The strong orientation D_1 of $K(2, 2, 2)$ with $\kappa(D_1) = \lceil \kappa(K(2, 2, 2))/2 \rceil$, $sdiam(D_1) > sdiam(K(2, 2, 2))$.
The digraph D_2 shown in Figure 3 is a strong orientation of $K(4, 4)$. By the orientation of D_2, we know that any two vertices are contained in a directed 4-cycle. And by Theorem 1.3, $4 \geq sdiam(D_2) \geq sdiam(K(4, 4)) = 4$. Hence, $sdiam(D_2) = sdiam(K(4, 4)) = 4$. But for any vertex $u \in V(D_2)$, $\min\{\delta^+(u), \delta^-(u)\} = 1$. Hence, $\kappa(D_2) = 1 < \lceil \kappa(K(4, 4))/2 \rceil = 2$.

Figure 3: The strong orientation D_2 of $K(4, 4)$ with $\kappa(D_2) < \lceil \kappa(K(4, 4))/2 \rceil$,

$$sdiam(D_2) = sdiam(K(4, 4)).$$
An orientation D of a graph G is defined by optimal strong (κ, d)-orientation of G if and only if $\kappa(D) = \lceil \kappa(G)/2 \rceil$ and $sdiam(D) = sdiam(G)$. We have the following main result.

Theorem 1.7: Let $k \geq 2$, $m_1 \leq m_2 \leq \cdots \leq m_k$, $m = m_1 + m_2 + \cdots + m_{k-1} \geq 2$. There exists an optimal strong (κ, d)-orientation of $K(m_1, m_2, \ldots, m_k)$.
2 Proof of the Main Result

A family \mathcal{F} of subsets of $\{1, 2, \ldots, n\}$ is an antichain if no set in \mathcal{F} is contained in another. The following is the well-known Sperner’s Lemma.

Sperner’s Lemma: Let \mathcal{F} be an antichain on $\{1, 2, \ldots, n\}$. Then $|\mathcal{F}| \leq \left(\binom{n}{\lfloor n/2 \rfloor}\right)$. The bound is attained by taking \mathcal{F} to be the family of all subsets of size $\lfloor n/2 \rfloor$.

We will give the proof of Theorem 1.7 in terms of the relation between m and m_k, where $m = m_1 + \cdots + m_{k-1}$.
3 Examples

\[m \leq m_k \leq \left(\frac{m}{\lfloor m/2 \rfloor} \right). \]

- Figure 4 gives the optimal strong \((\kappa, d)\)-Orientation of \(K(5, 5)\).

![Figure 4: The optimal strong \((\kappa, d)\)-Orientation of \(K(5, 5)\).]

- Figure 5 gives the optimal strong \((\kappa, d)\)-Orientation of \(K(2, 2, 6)\).

![Figure 5: The optimal strong \((\kappa, d)\)-Orientation of \(K(2, 2, 6)\).]
$m_k > \left(\frac{m}{\lfloor m/2 \rfloor} \right)$.

- Figure 6 gives the optimal strong (κ, d)-Orientation of $K(3, 4)$.

![Figure 6: The optimal strong (κ, d)-Orientation of $K(3, 4)$.

- Figure 7 gives the optimal strong (κ, d)-Orientation of $K(2, 2, 7)$.

![Figure 7: The optimal strong (κ, d)-Orientation of $K(2, 2, 7)$.
\[m_{k-1} \leq m_k < m. \]

- Figure 8 gives the optimal strong \((\kappa, d)\)-Orientation of \(K(2, 4, 5)\).

\[\text{Figure 8: The optimal strong } (\kappa, d)\text{-Orientation of } K(2, 4, 5). \]
References

谢谢！