Long heterochromatic paths in edge-colored graphs

Chen He and Li Xueliang

Center for Combinatorics, LPMC
Nankai University
Definitions and notations:

Let $G = (V, E)$ be a graph. By an edge-coloring of G we mean a surjective function $C : E \rightarrow \{1, 2, \cdots, r\}$.

If G is assigned such a coloring, then we say that G is an edge-colored graph, or r-edge-colored graph. Denote the colored graph by (G, C).
For a subgraph H of G, H is called heterochromatic if its any two edges have different colors. This kind of subgraph is also called rainbow, multicolored, polychromatic, colorful.

For example:
For a vertex v of G, the color neighborhood $CN(v)$ of v is defined as the set $\{C(e) \mid e \text{ is incident with } v\}$ and the color degree $d^c(v)$ is $d^c(v) = |CN(v)|$.

For example:

$CN(u_1) = \{c_1, c_2\}, \quad CN(u_2) = \{c_1, c_2, c_4\},$

$CN(u_3) = \{c_2, c_3, c_4\}, \quad CN(u_4) = \{c_1, c_3\}.$

$d^c(u_1) = d^c(u_4) = 2, \quad d^c(u_2) = d^c(u_3) = 3.$
The long heterochromatic paths was first considered in edge-colored complete graphs.

Some conditions for the existence of the heterochromatic hamiltonian cycles or the heterochromatic hamiltonian paths in edge-colored complete graphs was given.
Frieze and Reed showed that if the edges of the complete graph K_n are colored so that no color appears more than $\left\lceil \frac{n}{A \ln n} \right\rceil$ times, for some sufficiently large A, then there is always a heterochromatic Hamiltonian cycle.

Albert, Frieze and Reed showed that if \(n \) is sufficiently large and the edges of the complete graph \(K_n \) are colored so that no color appears more than \(\lceil cn \rceil \) times, where \(c < 1/32 \) is a constant, then there is a heterochromatic Hamiltonian cycle.

Hahn and Thomassen showed that there exists a constant c such that if $n \geq ck^3$ and the edges of K_n are colored using no color more than k times, then there is a heterochromatic Hamiltonian path.

Broersma, Li, Woeginger and Zhang showed that for an edge-colored graph G,

(1) if $d^c(v) \geq k$ for every vertex v of G, then for every vertex z of G there exists a heterochromatic z-path of length $\lceil \frac{k+1}{2} \rceil$,

(2) if $|CN(u) \cup CN(v)| \geq s > 1$ for every pair of vertices u and v of G, then G contains a heterochromatic path of length $\lceil \frac{s}{3} \rceil + 1$.

Our Main Results:

Theorem 1 Let G be an edge-colored graph and $k \geq 3$ an integer. Suppose that $d^c(v) \geq k$ for every vertex v of G. Then:

1. G has a heterochromatic path of length at least $k - 1$ if $3 \leq k \leq 7$.
2. G has a heterochromatic path of length at least $\lceil \frac{3k}{5} \rceil + 1$ if $k \geq 8$.
Proof. (1) The case when $3 \leq k \leq 7$ is easy, we show that G has a heterochromatic path of length at least $k - 1$ by considering every cases for each k.

(2) For $k \geq 8$, we use induction on k. Then G has a heterochromatic path of length at least $\lceil \frac{3(k-1)}{5} \rceil + 1$ which is equal to $\lceil \frac{3k}{5} \rceil$ if $k \equiv 1, 2, 4 \ (mod \ 5)$ and $\lceil \frac{3k}{5} \rceil + 1$ otherwise. So we shall only consider the case when $k \equiv 1, 2, 4 \ (mod \ 5)$, now we will proceed by contradictions, we suppose that the longest heterochromatic path in G is of length $l = \lceil \frac{3k}{5} \rceil$.
Let \(P = u_1 u_2 u_3 \ldots u_{l-1} u_l u_{l+1} v_1 v_2 \ldots v_s \) be a path in \(G \) such that:

(a) \(u_1 Pu_{l+1} \) is a longest heterochromatic path in \(G \);
(b) \(C(u_{l+1} v_1) = C(u_{k_0} u_{k_0+1}) \) and \(1 \leq k_0 \leq l \) is as small as possible, subject to (a);
(c) \(v_1 Pv_s \) is a heterochromatic path in \(G \) with \(C(u_1 Pu_{l+1}) \cap C(v_1 Pv_s) = \emptyset \) and \(v_1 Pv_s \) is as long as possible, subject to (a) and (b).

Then we can get a contradiction. So \(G \) has a heterochromatic path of length \(\lceil \frac{3k}{5} \rceil + 1 \).

\[\square \]
Theorem 2 If $d^c(v) \geq k \geq 7$ for any $v \in V(G)$, then G has a heterochromatic path of length at least $\lceil \frac{2k}{3} \rceil + 1$.

Proof. We use induction on k. Then G has a heterochromatic path of length at least $\lceil \frac{2(k-1)}{3} \rceil + 1$ which is equal to $\lceil \frac{2k}{3} \rceil$ if $k \equiv 1, 2 \ (mod \ 3)$ and $\lceil \frac{2k}{3} \rceil + 1$ otherwise. So we shall only consider the case when $k \equiv 1, 2 \ (mod \ 3)$, now we will proceed by contradictions, we suppose that the longest heterochromatic path in G is of length $l = \lceil \frac{2k}{3} \rceil$.
We first show that G has a heterochromatic path $P = u_1 u_2 \ldots u_l u_{l+1}$ of length $l = \lceil \frac{2k}{3} \rceil$ and there exists a $v_1 \in V(G) - V(P)$ such that $C(u_{l+1} v_1) = C(u_1 u_2)$.

Then we find a heterochromatic path of length $l + 1$ in all the possible cases. So we get a contradiction. G has a heterochromatic path of length at least $\lceil \frac{2k}{3} \rceil + 1$. ■
Actually, we can show that for $1 \leq k \leq 5$ any graph G with $d^c(v) \geq k$ for every vertex v of G has a heterochromatic path of length at least k, with only one exceptional graph K_4 for $k = 3$, one exceptional graph for $k = 4$ and three exceptional graphs for $k = 5$, for which (all the exceptional graphs) G has a heterochromatic path of length at least $k - 1$. If $k = 8$, by Theorem 2 G also has a heterochromatic path of length at least $k - 1$. So, we propose the following conjecture:

Conjecture 3 If $d^c(v) \geq k \geq 3$ for any $v \in V(G)$, then G has a heterochromatic path of length at least $k - 1$.
If this conjecture is true, it would be best possible.

Example 1: Let G_k be an edge-colored graph whose vertices are the ordered $(k - 1)$-tuples of 0’s and 1’s; two vertices are joined by an edge if and only if they differ in exactly one coordinate or they differ in all coordinates. An edge is in color j ($1 \leq j \leq k - 1$) if and only if its two ends differ in exactly the j-th coordinate, or in color k if and only if its two ends differ in all the coordinates.
It is not difficult to check that G_k is an edge-colored graph such that $d^c(v) \geq k$ for all the vertices v, and any longest heterochromatic path of G_k is of length $k - 1$.
Example 2: Let G'_k be a proper k-edge-colored K_{k+1} when k is odd. (Since K_n is $(n-1)$-edge-colorable when n is even, such G'_k exists when k is odd.)

Then, it is obvious that any longest heterochromatic path in G'_k is of length $k - 1$ when k is odd.
Theorem 4 Let G be an edge-colored graph and s a positive integer. Suppose that $|CN(u) \cup CN(v)| \geq s \geq 4$ for every pair of vertices u and v of G. Then G has a heterochromatic path of length at least $\left\lfloor \frac{2s+4}{5} \right\rfloor$.

Proof. By contradiction. Suppose $P = u_1u_2\ldots u_lu_{l+1}$ is a longest heterochromatic path of length $l < \left\lfloor \frac{2s+4}{5} \right\rfloor$. Use the condition that $|CN(u_1) \cup CN(u_{l+1})| \geq s \geq 4$, we get a contradiction. So G has a heterochromatic path of length at least $\left\lfloor \frac{2s+4}{5} \right\rfloor$. □
Theorem 5 Suppose G is an edge-colored graph, $|CN(u) \cup CN(v)| \geq s \geq 1$ for any two vertices u, v in G, then there exists a heterochromatic path of length $\lceil \frac{s+1}{2} \rceil$ in G.

Proof. (1) For $1 \leq s \leq 7$, the results are obvious.
(2) For $s \geq 8$, we use induction on s. Then G has a heterochromatic path of length $\lceil \frac{s}{2} \rceil$ which is equal to $\lceil \frac{s+1}{2} \rceil - 1$ if s is even and $\lceil \frac{s+1}{2} \rceil$ otherwise. So we shall only consider the case when s is even. Now we will proceed by contradictions. Suppose $P = u_1u_2 \ldots u_lu_{l+1}$ is a longest heterochromatic path of length $l = \lceil \frac{s+1}{2} \rceil - 1$.
Then we can get that $N(u_0) \subseteq V(P)$ and $N(u_l) \subseteq V(P)$, which implies that $|CN(u_0) \cup CN(u_l)| = 2l - 1 = s - 2$, a contradiction. So we can conclude that there exists a heterochromatic path of length $\lceil \frac{s+1}{2} \rceil$ in G. □

Note that the bound we gave in Theorem 5 is best possible.
Example: Let s be a positive integer. If s is even, let G_s be the graph obtained from the complete graph $K_{\frac{s+4}{2}}$ by deleting an edge; if s is odd, let G_s be the complete graph $K_{\frac{s+3}{2}}$. Then, color the edges of G_s by different colors for any two different edges.

So, for any $s \geq 1$ we have that $|CN(u) \cup CN(v)| \geq s$ for any pair of vertices u and v in G, and any longest heterochromatic path in G is of length $\left\lceil \frac{s+1}{2} \right\rceil$.
Thank you!