On f-colorings of simple graphs

Xia Zhang

School of Mathematics and System Science,
Shandong University
xzhang@math.sdu.edu.cn
1. Introduction

Let G be a graph and let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$.

An f-coloring of G is an edge-coloring such that each vertex v has at most $f(v)$ edges colored with the same color. The minimum number of colors needed to f-color G is called an f-chromatic index of G, and denoted by $\chi'_f(G)$.
If $f(v) = 1$ for all $v \in V(G)$, the f-coloring problem is reduced to the proper edge-coloring problem.

Since the proper edge-coloring problem is NP-complete (Holyer, SIAM J. Comput., 1981), the f-coloring problem is also NP-complete in general.
Hakimi and Kariv (JGT, 1986) studied the f-coloring problem and obtained some upper bounds on \(\chi_f'(G) \). Nakano et al. (IEEE Trans. Circuit and Syst., 1988) obtained another upper bound on \(\chi_f'(G) \).
In the proper edge-coloring, one of the most celebrated results is that

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$$

for any simple graph G (Vizing, 1964).
Let
\[\Delta_f(G) = \max_{v \in V(G)} \left\lceil \frac{d(v)}{f(v)} \right\rceil. \]

Similarly, we have:

Lemma 1. Let \(G \) be a simple graph. Then
\[\Delta_f(G) \leq \chi'_f(G) \leq \max_{v \in V(G)} \left\lceil \frac{d(v) + 1}{f(v)} \right\rceil \leq \Delta_f(G) + 1. \]
We say that G is of $C_f 1$ if $\chi'_f(G) = \Delta_f(G)$; and that G is of $C_f 2$ if $\chi'_f(G) = \Delta_f(G) + 1$.

2. MAIN RESULTS

Note that any subgraph G' of G has $f_{G'}(v) = f_G(v)$ for all $v \in V(G')$.

Theorem 2. (Hakimi and Kariv, JGT, 1986)
Let G be a bipartite graph. Then $\chi_f'(G) = \Delta_f(G)$.

Theorem 3. (Hakimi and Kariv, JGT, 1986)
Let G be a graph and $f(v)$ be even for all $v \in V(G)$. Then $\chi_f'(G) = \Delta_f(G)$.
Let

\[V_0^*(G) = \{ v : \Delta_f(G) = \frac{d(v)}{f(v)}, v \in V(G) \}. \]

Theorem 4. (Zhang and Liu, JAMC, 2005)

Let \(G \) be a simple graph. If \(V_0^*(G) = \emptyset \), then \(G \) is of \(C_f \) 1.
The *f-core* of a graph *G* is the subgraph of *G* induced by the vertices of \(V_0^*(G) \) and is denoted by \(G_{\Delta f} \).

Theorem 5. (Zhang and Liu, AML, 2006) Let *G* be a simple graph. Then *G* is of \(C_f 1 \) if \(G_{\Delta f} \) is a forest.
The number $\frac{d(v)}{f(v)}$ is called the f-ratio of vertex v of G, and denoted by $d_f(v)$.

Clearly, $d_f(v) = \Delta_f(G)$ if and only if $v \in V_0^*(G)$.
Let us call a graph $G \Delta_f(G)$-peelable, if all the vertices of G can be iteratively peeled away using the following operation: Peel off any vertex that has at most one remaining neighbor of f-ratio $\Delta_f(G)$.

Theorem 6. (Zhang and Liu) Let G be a simple graph. If G is $\Delta_f(G)$-peelable, then G is of C_f 1.
If the f-core of G is a forest, then G is $\Delta_f(G)$-peelable, since we can remove all the vertices of $V_0^*(G)$ by iteratively removal of the remaining vertices with degree one in G_{Δ_f}.

In fact, Theorem 6 gives a more general class of graphs than Theorem 5.
We have $\Delta_f(G) = 3$ and $V_0^*(G) = \{v_1, v_3, v_4, v_5, v_7, v_8, v_9\}$.
G is $\Delta_f(G)$-peelable in the order v_1, v_2, \ldots, v_{10}, though the f-core of G is not a forest.

Fig. 1. A graph G with $f(v_i) = 1$ ($1 \leq i \leq 5$) and $f(v_j) = 2$ ($6 \leq j \leq 10$)
Let

\[f^* = \min_{v \in V(G)} \{f(v)\}. \]

Theorem 7. (Zhang and Liu, JAMC, 2005) Let \(G \) be a complete graph \(K_n \). If \(k \) and \(n \) are odd integers, \(f(v) = k \) and \(k \mid (n - 1) \) for all \(v \in V \), then \(G \) is of \(C_f 2 \). Otherwise, \(G \) is of \(C_f 1 \).
Theorem 8. (Zhang, Wang and Liu) Let G be a regular graph of degree $d(G) = \Delta$. Then G is of $C_f 1$ if $f^* \nmid \Delta$ or f^* is even.

Theorem 9. (Zhang, Wang and Liu) Let $n \geq 1$. Let G be a regular graph of order $2n + 1$ and degree $d(G) = \Delta$. Then G is of $C_f 2$ if $f(v) = f^*$ is odd for all $v \in V$ and $f^* \mid \Delta$.
Theorem 10. (Zhang, Wang and Liu) Let G be a regular graph with order n and degree $d(G) = \Delta$, and let $G \neq K_n$. Let $w \in V$ be the only vertex such that $f(w) > f^*$. Then G is of $C_f 1$ if and only if $G \setminus w$ is of $C_f 1$.

Theorem 11. (Zhang, Wang and Liu) Let $n \geq 1$. Let G be a regular graph with order $2n$ and degree $d(G) = \Delta$, where $G \neq K_{2n}$. Let $f(v) = f^*$ for all $v \in V$. G is of $C_f 1$ if and only if $G \setminus w$ is of $C_f 1$, where $w \in V$.
Problem 1. *Find the necessary or sufficient conditions for a simple graph to be of C_f 1 or C_f 2.*

Problem 2. *Find the classes of graphs which are of C_f 1 for arbitrary positive integer function f.***
Problem 3. Discuss the properties of critical graphs on f-colorings.

Problem 4. Find the sufficient conditions for a regular graph of degree $d(G) = \Delta$ to be of C_f 1 or C_f 2 when $f^* \mid \Delta$ and f^* is odd.
3. Application to equitable edge-colorings of simple graphs

Given an edge-coloring of G with k colors in C, for $v \in V(G)$, let $c_i(v)$ denote the set of edges incident with v colored with c_i ($1 \leq i \leq k$). Call an edge-coloring of G with k colors in C equitable if

$$||c_i(v)| - |c_j(v)|| \leq 1 \ (\forall \ 1 \leq i < j \leq k)$$

for every $v \in V(G)$.
Define $V_k(G) = \{v \in V(G) : k \mid d(v)\}$. Call the subgraph of G induced by $V_k(G)$ the k-core of G.

Conjecture 1. (Hilton, 2005) Let G be a simple graph and let $k \geq 2$. If the k-core of G is a forest, then G has an equitable edge-coloring with k colors.
By virtue of some methods in f-colorings of graphs, we obtain a new sufficient condition for equitable edge-colorings of simple graphs, which not only verifies Conjecture 1, but also substantially extends it to a more general class of graphs.
For a graph G, let C denote the set of colors available to color the edges of G.

Define $m(v, \alpha) = f(v) - d(v, \alpha)$ and $M(v) = \{\alpha : m(v, \alpha) \geq 1, \alpha \in C\}$.
Theorem 12. (Zhang and Liu, 2006) Let G be a simple graph and let $k \geq 2$. Let $f(v) = \left\lceil \frac{d(v)}{k} \right\rceil$ for each $v \in V(G)$. Let $C = \{c_1, c_2, \ldots, c_k\}$. If the edges of G can be f-colored with k colors of C in the order $e_1, e_2, \ldots, e_{\varepsilon(G)}$ in such a way that, for every j ($1 \leq j \leq \varepsilon(G)$), when f-coloring the jth edge $e_j = w_jv_j$, there are $M(v) \neq \emptyset$ for all $v \in N_G(w_j)$ or for all $v \in N_G(v_j)$, then G has an equitable edge-coloring with k colors.
It is rather difficult to decide whether or not a graph has the properties described in Theorem 12. Fortunately, we find a much easier sufficient condition for a graph to have the properties described in Theorem 12.

Theorem 13. (Zhang and Liu, 2006) Let G be a simple graph and let $k \geq 2$. Let $f(v) = \lceil \frac{d(v)}{k} \rceil$ for each $v \in V(G)$. If G is $\Delta_f(G)$-peelable, then G has an equitable edge-coloring with k colors.
Let \(f(v) = \left\lceil \frac{d(v)}{k} \right\rceil \) for each \(v \in V(G) \).

It is easy to see that when \(V_k(G) \neq \emptyset \), the \(k \)-core of \(G \) is exactly the \(f \)-core of \(G \). Since a simple graph \(G \) whose \(k \)-core is a forest is \(\Delta_f(G) \)-peelable, Conjecture 1 is true.
Theorem 14. (Zhang and Liu, 2006) Let G be a simple graph and let $k \geq 2$. If the k-core of G is a forest, then G has an equitable edge-coloring with k colors.

As mentioned in Section 2, Theorem 13 is strictly stronger than Theorem 14.
Problem 5. Let G be a graph and let $k \geq 2$. Let $f(v) = \lceil \frac{d(v)}{k} \rceil$ for each $v \in V(G)$. Suppose that $V_{k}(G) \neq \emptyset$. G has an equitable edge-coloring with k colors if and only if G is of C_f 1?
Thank you!
REFERENCES

3. X. Zhou and T. Nishizeki, Decompositions to degree-constrained subgraphs are simply

10. X. Zhang and G. Z. Liu, f-colorings of some graphs of $C_f 1$, (submitted)

11. X. Zhang and G. Z. Liu, Equitable edge-colorings of simple graphs, (submitted)

15. Hakimi, S.L., Schmeichel, E.F.: Improved bounds for the chromatic index of graphs
and multigraphs. J. Graph Theory 32, 311-326 (1999)