Primitive Half-transitive Graphs of Valency Twice a Prime

Zai Ping Lu

Center for Combinatorics
Nankai University
Tianjin, 300071
email: lu@nankai.edu.cn
Notations

All graphs here are finite, simple and regular with at least one edge. Let Γ be a graph.

- Vertex set $V\Gamma$, edge set $E\Gamma$, arc set $A\Gamma$
Notations

All graphs here are finite, simple and regular with at least one edge. Let Γ be a graph.

- Vertex set V_Γ, edge set E_Γ, arc set A_Γ
- $\text{Aut}\Gamma$, automorphism group of Γ
Notations

All graphs here are finite, simple and regular with at least one edge. Let Γ be a graph.

- Vertex set $V\Gamma$, edge set $E\Gamma$, arc set $A\Gamma$
- $\text{Aut}\Gamma$, automorphism group of Γ
- $G \leq \text{Aut}\Gamma$, G is a subgroup of $\text{Aut}\Gamma$
Key Words

For $G \leq \text{Aut}\Gamma$, the graph Γ is said to be $
\textit{G-vertex transitive}$, if G acts transitively on $V\Gamma$;
For $G \leq \text{Aut}\Gamma$, the graph Γ is said to be

- G-vertex transitive, if G acts transitively on $V\Gamma$;
- G-edge transitive, if G acts transitively on $E\Gamma$;
Key Words

For $G \leq \text{Aut}\Gamma$, the graph Γ is said to be

- **G-vertex transitive**, if G acts transitively on $V\Gamma$;
- **G-edge transitive**, if G acts transitively on $E\Gamma$;
- **G-arc transitive**, if G acts transitively on $A\Gamma$;
Key Words

For $G \leq \text{Aut}\Gamma$, the graph Γ is said to be

- G-vertex transitive, if G acts transitively on $V\Gamma$;
- G-edge transitive, if G acts transitively on $E\Gamma$;
- G-arc transitive, if G acts transitively on $A\Gamma$;
- G-primitive, if G acts primitively on $V\Gamma$;
Key Words

For \(G \leq \text{Aut}\Gamma \), the graph \(\Gamma \) is said to be

- **\(G \)-vertex transitive**, if \(G \) acts transitively on \(V\Gamma \);
- **\(G \)-edge transitive**, if \(G \) acts transitively on \(E\Gamma \);
- **\(G \)-arc transitive**, if \(G \) acts transitively on \(A\Gamma \);
- **\(G \)-primitive**, if \(G \) acts primitively on \(V\Gamma \);
- **\(G \)-half transitive**, if \(G \) acts transitively on \(V\Gamma \) and on \(E\Gamma \) but not on \(A\Gamma \);
Key Words

For $G \leq \text{Aut}\Gamma$, the graph Γ is said to be

- G-vertex transitive, if G acts transitively on $V\Gamma$;
- G-edge transitive, if G acts transitively on $E\Gamma$;
- G-arc transitive, if G acts transitively on $A\Gamma$;
- G-primitive, if G acts primitively on $V\Gamma$;
- G-half transitive, if G acts transitively on $V\Gamma$ and on $E\Gamma$ but not on $A\Gamma$;
- half-transitive, if $\text{Aut}\Gamma$ acts transitively on $V\Gamma$ and on $E\Gamma$ but not on $A\Gamma$.
Several Known Results

- **Tutte**: A vertex and edge transitive graph of odd valency is arc transitive (Connectivity in graphs, Univ. of Toronto Press, 1966).
Several Known Results

- **Tutte**: A vertex and edge transitive graph of odd valency is arc transitive (Connectivity in graphs, Univ. of Toronto Press, 1966).

- **Bouwer**: For each integer $k \geq 2$, there exists a half transitive graph of valency $2k$ (Canad. Math. Bull. 13(1970)). The smallest graph given by Bouwer’s construction has 54 vertices and valency 4.
Several Known Results

- **Tutte**: A vertex and edge transitive graph of odd valency is arc transitive (Connectivity in graphs, Univ. of Toronto Press, 1966).

- **Bouwer**: For each integer $k \geq 2$, there exists a half transitive graph of valency $2k$ (*Canad. Math. Bull. 13* (1970)). The smallest graph given by Bouwer’s construction has 54 vertices and valency 4.

- **Holt**: A half transitive graph on 27 vertices with valency 4 (*J. Graph Theory 5* (1981)), which is the smallest one (*Alspach et al, J. Austral. Math. Soc. Ser. A 56* (1994)), and is unique up to isomorphism (*Praeger and Xu, J. Algebraic Combin. 1* (1992)).
Several Known Results

- **Holt** (1981): Question on the existence of primitive half transitive graphs (Holt, *J. Graph Theory* **5** (1981); Holton, *Discrete Math.* **38** (1982)).
Several Known Results

- **Praeger** and **Xu** (1993): The first ten examples of primitive half transitive graphs: one of valency 24, one of valency 48, and the others have valency 120.
Several Known Results

- **Praeger** and **Xu** (1993): The first ten examples of primitive half transitive graphs: one of valency 24, one of valency 48, and the others have valency 120.

- **Taylor** and **Xu** (1994): An infinite class of such graphs with valency 120.
Several Known Results

- **Praeger** and **Xu** (1993): The first ten examples of primitive half transitive graphs: one of valency 24, one of valency 48, and the others have valency 120.

- **Taylor** and **Xu** (1994): An infinite class of such graphs with valency 120.

- **Du** and **Xu** (1999): The smallest primitive half transitive graph has order 165 and valency 48.
Several Known Results

Li, Lu and Marušič (J. Algebra 279 (2004))

- Another infinite class of primitive half transitive graphs of valencies $2(2^{2m+1} - 1)$ for $m \geq 1$.
Several Known Results

Li, Lu and Marušić (J. Algebra 279 (2004))

- Another infinite class of primitive half transitive graphs of valencies $2(2^{2m+1} - 1)$ for $m \geq 1$.
- There exist no primitive half transitive graphs of valency less than 10.
Several Known Results

Li, Lu and Marušič (J. Algebra 279 (2004))

- Another infinite class of primitive half transitive graphs of valencies $2(2^{2m+1} - 1)$ for $m \geq 1$.
- There exist no primitive half transitive graphs of valency less than 10.
- The smallest valency of primitive half transitive graphs is one of 10, 12, and 14.
Several Known Results

Li, Lu and Marušič (J. Algebra 279 (2004))

- Another infinite class of primitive half transitive graphs of valencies $2(2^{2m+1} - 1)$ for $m \geq 1$.
- There exist no primitive half transitive graphs of valency less than 10.
- The smallest valency of primitive half transitive graphs is one of 10, 12, and 14.

Problem: Find all integers k such that there exist primitive half transitive graphs of valency $2k$.
Main Result

We denote by \mathcal{V}_{ph} the set of integers k such that there exists a primitive half transitive graph of valency $2k$. Then $2, 3, 4 \not\in \mathcal{V}_{ph}$ and $7, 12, 24, 60, 2^{2m+1} - 1 \in \mathcal{V}_{ph}$.

Theorem. If $p \geq 7$ is a prime and $p \neq 13$ then $p \in \mathcal{V}_{ph}$.
Orbital and Graph

Let G be a transitive permutation on Ω. Let $\alpha, \beta \in \Omega$.

- **Paired orbitals**, $\Delta := (\alpha, \beta)^G$ and $\Delta^* = (\beta, \alpha)^G$.
Orbital and Graph

Let G be a transitive permutation on Ω. Let $\alpha, \beta \in \Omega$.

- **Paired orbitals**, $\Delta := (\alpha, \beta)^G$ and $\Delta^* = (\beta, \alpha)^G$.
- **Paired suborbits**, $\Delta(\alpha) = \{\rho \mid (\alpha, \rho) \in \Delta\}$ and $\Delta^*(\alpha) = \{\rho \mid (\alpha, \rho) \in \Delta^*\}$ are orbits of G_α.
Orbital and Graph

Let G be a transitive permutation on Ω. Let $\alpha, \beta \in \Omega$.

- **Paired orbitals**, $\Delta := (\alpha, \beta)^G$ and $\Delta^* = (\beta, \alpha)^G$.

- **Paired suborbits**, $\Delta(\alpha) = \{ \rho \mid (\alpha, \rho) \in \Delta \}$ and $\Delta^*(\alpha) = \{ \rho \mid (\alpha, \rho) \in \Delta^* \}$ are orbits of G_α.

- $|\Delta^*(\alpha)| = |\Delta(\alpha)| = |G_\alpha : G_{\alpha\beta}|$.
Orbital and Graph

Let G be a transitive permutation on Ω. Let $\alpha, \beta \in \Omega$.

- **Paired orbitals**, $\Delta := (\alpha, \beta)^G$ and $\Delta^* = (\beta, \alpha)^G$.

- **Paired suborbits**, $\Delta(\alpha) = \{\rho | (\alpha, \rho) \in \Delta\}$ and $\Delta^*(\alpha) = \{\rho | (\alpha, \rho) \in \Delta^*\}$ are orbits of G_α.

- $|\Delta^*(\alpha)| = |\Delta(\alpha)| = |G_\alpha : G_{\alpha\beta}|$.

- $(\Omega, \Delta \cup \Delta^*)$ is G-vertex and G-edge transitive;
 $(\Omega, \Delta \cup \Delta^*)$ is G-arc transitive $\iff \Delta(\alpha) = \Delta^*(\alpha)$
 $\iff \exists g \in N_G(G_{\alpha\beta})$ with $\beta = \alpha^g$ and $g^2 \in G_{\alpha\beta}$.

Orbital and Graph

Let G be a transitive permutation on Ω. Let $\alpha, \beta \in \Omega$.

- **Paired orbitals**, $\Delta := (\alpha, \beta)^G$ and $\Delta^* = (\beta, \alpha)^G$.

- **Paired suborbits**, $\Delta(\alpha) = \{ \rho \mid (\alpha, \rho) \in \Delta \}$ and $\Delta^*(\alpha) = \{ \rho \mid (\alpha, \rho) \in \Delta^* \}$ are orbits of G_α.

- $|\Delta^*(\alpha)| = |\Delta(\alpha)| = |G_\alpha : G_{\alpha \beta}|$.

- $(\Omega, \Delta \cup \Delta^*)$ is G-vertex and G-edge transitive; $(\Omega, \Delta \cup \Delta^*)$ is G-arc transitive $\iff \Delta(\alpha) = \Delta^*(\alpha)$ $\iff \exists g \in N_G(G_{\alpha \beta})$ with $\beta = \alpha^g$ and $g^2 \in G_{\alpha \beta}$.

- Γ is G-vertex and G-edge transitive \Rightarrow $\Gamma \cong (V\Gamma, \Delta \cup \Delta^*)$ for paired orbitals Δ and Δ^*.

Idea

Let G be a transitive permutation on Ω.

- Find an orbital Δ or a suborbit $\Delta(\alpha)$
Idea

Let G be a transitive permutation on Ω.

- Find an orbital Δ or a suborbit $\Delta(\alpha)$
- $\Delta \neq \Delta^*$ or $\Delta(\alpha) \neq \Delta^*(\alpha)$?
Idea

Let G be a transitive permutation on Ω.

- Find an orbital Δ or a suborbit $\Delta(\alpha)$
- $\Delta \neq \Delta^*$ or $\Delta(\alpha) \neq \Delta^*(\alpha)$?
- $G \leq \text{Aut}(\Omega, \Delta \cup \Delta^*) =$?
Key Lemmas

Lemma A
Let G be a primitive permutation group on Ω, $\alpha \in \Omega$. Let $K < G_\alpha$, $K \not\trianglelefteq G_\alpha$ and $|G_\alpha : K| = l > 1$. Suppose that all subgroups of index l of G_α are conjugate in G_α, then

- the number of suborbits of length l at α is equal to $|N_G(K) : K| - 1$;
Lemma A

Let G be a primitive permutation group on Ω, $\alpha \in \Omega$. Let $K \lhd G_\alpha$, $K \not\triangleleft G_\alpha$ and $|G_\alpha : K| = l > 1$. Suppose that all subgroups of index l of G_α are conjugate in G_α, then

- the number of suborbits of length l at α is equal to $|N_G(K) : K| - 1$;
- $\Delta(\alpha) := \alpha z^{G_\alpha}$ is a suborbit with length l at α, where $z \in N_G(K) \setminus K$; $\Delta(\alpha)$ is self-paired iff $z^2 \in K$.
Key Lemmas

Lemma A
Let G be a primitive permutation group on Ω, $\alpha \in \Omega$. Let $K < G_\alpha$, $K \not\triangleleft G_\alpha$ and $|G_\alpha : K| = l > 1$. Suppose that all subgroups of index l of G_α are conjugate in G_α, then

- the number of suborbits of length l at α is equal to $|N_G(K) : K| - 1$;
- $\Delta(\alpha) := \alpha^z G_\alpha$ is a suborbit with length l at α, where $z \in N_G(K) \setminus K$; $\Delta(\alpha)$ is self-paired iff $z^2 \in K$;
- $(\Omega, \Delta \cup \Delta^*)$ is G-arc transitive iff $z^2 \in K$; there exist primitive G-half transitive graphs of valency $2l$ iff $N_G(K)/K$ is not an elementary abelian 2-group.
Key Lemmas

Lemma B
Let $p \geq 7$ be a prime, and let $x \in S_p$ be of order p. Then

- x is a p-cycle;
Key Lemmas

Lemma B
Let $p \geq 7$ be a prime, and let $x \in S_p$ be of order p. Then

- x is a p-cycle;
- $N_{S_p}(\langle x \rangle)$ is a maximal subgroup of S_p;
Key Lemmas

Lemma B
Let \(p \geq 7 \) be a prime, and let \(x \in S_p \) be of order \(p \). Then

- \(x \) is a \(p \)-cycle;
- \(N_{S_p}(\langle x \rangle) \) is a maximal subgroup of \(S_p \);
- \(N_{S_p}(\langle x \rangle) = \langle x \rangle \rtimes \langle y \rangle \) for a \((p - 1) \)-cycle \(y \in S_{p-1} \);
Key Lemmas

Lemma B
Let $p \geq 7$ be a prime, and let $x \in S_p$ be of order p. Then

- x is a p-cycle;
- $N_{S_p}(\langle x \rangle)$ is a maximal subgroup of S_p;
- $N_{S_p}(\langle x \rangle) = \langle x \rangle \rtimes \langle y \rangle$ for a $(p - 1)$-cycle $y \in S_{p-1}$;
- $N_{S_p}(\langle y \rangle) = N_{S_{p-1}}(\langle y \rangle)$;
Key Lemmas

Lemma B
Let $p \geq 7$ be a prime, and let $x \in S_p$ be of order p. Then

- x is a p-cycle;
- $N_{S_p}(\langle x \rangle)$ is a maximal subgroup of S_p;
- $N_{S_p}(\langle x \rangle) = \langle x \rangle \rtimes \langle y \rangle$ for a $(p - 1)$-cycle $y \in S_{p-1}$;
- $N_{S_p}(\langle y \rangle) = N_{S_{p-1}}(\langle y \rangle)$;
- $N_{S_{p-1}}(\langle y \rangle)/\langle y \rangle$ is an elementary abelian 2-group iff $p = 7$ or 13.
Construction

Let $p \geq 7$ be a prime.

- Take a p-cycle $x \in S_p$ and a $(p - 1)$-cycle $y \in S_{p-1}$ such that y normalizes $\langle x \rangle$.
Construction

Let $p \geq 7$ be a prime.

- Take a p-cycle $x \in S_p$ and a $(p - 1)$-cycle $y \in S_{p-1}$ such that y normalizes $\langle x \rangle$.
- \(H = \langle x, y \rangle \), \(K = \langle y \rangle \) and \(\Omega := \{ Hg \mid g \in S_p \} \).
Construction

Let $p \geq 7$ be a prime.

- Take a p-cycle $x \in S_p$ and a $(p - 1)$-cycle $y \in S_{p-1}$ such that y normalizes $\langle x \rangle$.
- $H = \langle x, y \rangle$, $K = \langle y \rangle$ and $\Omega := \{ Hg \mid g \in S_p \}$.
- S_p acts primitively on Ω by right multiplication.
Construction

Let $p \geq 7$ be a prime.

- Take a p-cycle $x \in S_p$ and a $(p - 1)$-cycle $y \in S_{p-1}$ such that y normalizes $\langle x \rangle$.
- $H = \langle x, y \rangle$, $K = \langle y \rangle$ and $\Omega := \{ Hg \mid g \in S_p \}$.
- S_p acts primitively on Ω by right multiplication.

- $\Delta = (\alpha, \alpha^z)^{S_p}$, $\Delta^* = (\alpha, \alpha^{-1}z)^{S_p}$, $\alpha := H \in \Omega$, $z \in N_{S_{p-1}}(K) \setminus K$. Then $\Delta(\alpha) = \alpha^zH$ and $\Delta^*(\alpha) = \alpha^{-1}zH$ are paired suborbits of length p.
Let $p \geq 7$ be a prime.

- Take a p-cycle $x \in S_p$ and a $(p - 1)$-cycle $y \in S_{p-1}$ such that y normalizes $\langle x \rangle$.
- $H = \langle x, y \rangle$, $K = \langle y \rangle$ and $\Omega := \{ Hg \mid g \in S_p \}$.
- S_p acts primitively on Ω by right multiplication.
- $\Delta = (\alpha, \alpha^z)^{S_p}$, $\Delta^* = (\alpha, \alpha^{z^{-1}})^{S_p}$, $\alpha := H \in \Omega$, $z \in N_{S_{p-1}}(K) \setminus K$. Then $\Delta(\alpha) = \alpha^{zH}$ and $\Delta^*(\alpha) = \alpha^{z^{-1}H}$ are paired suborbits of length p.
- $\Gamma(p, z) := (\Omega, \Delta \cup \Delta^*)$.
\(\Gamma(p, z) \)

- \(\Gamma(p, z) \) is an \(S_p \)-primitive Cayley graph of \(S_{p-2} \).
\(\Gamma(p, z) \)

- \(\Gamma(p, z) \) is an \(S_p \)-primitive Cayley graph of \(S_{p-2} \).
- \(\Gamma(p, z) \) is \(S_p \)-arc transitive of valency \(p \) if \(z^2 \in K \).
\(\Gamma(p, z) \)

- \(\Gamma(p, z) \) is an \(S_p \)-primitive Cayley graph of \(S_{p-2} \).
- \(\Gamma(p, z) \) is \(S_p \)-arc transitive of valency \(p \) if \(z^2 \in K \).
- \(\Gamma(7, z) \) and \(\Gamma(13, z) \) are arc transitive.
Γ(\(p, z\))

- **Γ(\(p, z\))** is an \(S_p\)-primitive Cayley graph of \(S_{p-2}\).
- **Γ(\(p, z\))** is \(S_p\)-arc transitive of valency \(p\) if \(z^2 \in K\).
- **Γ(7, z)** and **Γ(13, z)** are arc transitive.
- **Γ(\(p, z\))** is \(S_p\)-half transitive of valency \(2p\) if \(p \geq 11\), \(p \neq 13\) and \(z^2 \notin K\) (there always exists such a \(z\)).
$\Gamma(p, z)$

- $\Gamma(p, z)$ is an S_p-primitive Cayley graph of S_{p-2}.
- $\Gamma(p, z)$ is S_p-arc transitive of valency p if $z^2 \in K$.
- $\Gamma(7, z)$ and $\Gamma(13, z)$ are arc transitive.
- $\Gamma(p, z)$ is S_p-half transitive of valency $2p$ if $p \geq 11$, $p \neq 13$ and $z^2 \not\in K$ (there always exists such a z).
- $\text{Aut}\Gamma(p, z) = S_p$.

- p. 13/16
Conclusion

For each prime $p \geq 7$ with $p \neq 13$, there exists at least one primitive half transitive graph of valency $2p$.
Problems

- Noting that the automorphism of each graph given by our construction has a solvable vertex stabilizer. Then an interesting problem arises: Is there a primitive half-transitive graph of valency $2p$ such that its automorphism group has insolvable vertex stabilizers?

- We know affirmatively that 2, 3 and 4 are not members of \mathcal{V}_{ph}. How about 5, 13 and other small positive integers?
Thank You!
References

