Connectivity and Edge-connectivity of Cartesian Products of Graphs

Yang Chao

Department of Mathematics
University of Science and Technology of China
E-mail: yangchao@mail.ustc.edu.cn

August 16, 2006
Definition of Cartesian Product

Definition
Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. Their Cartesian product, denoted by $G_1 \square G_2$, take $V_1 \times V_2$ as vertex set. Two vertices x_1x_2 and y_1y_2 in the Cartesian product are adjacent if and only if $x_1 = y_1, x_2y_2 \in E_2$ or $x_2 = y_2, x_1y_1 \in E_1$.
Sabidussi’s Result

Theorem (Sabidussi, 1957)
Let G_1 and G_2 be two connected graph, then
\[\kappa(G_1 \Box G_2) \geq \kappa(G_1) + \kappa(G_2). \]

Corollary (Sabidussi, 1957)
Let G_1 and G_2 be two maximally connected graph, then
\[\kappa(G_1 \Box G_2) = \kappa(G_1) + \kappa(G_2). \]

Sabidussi use this result to show that there are infinitely many non-isomorphic graphs with the same given automorphism group and the same connectivity.
Theorem (Xu, 1998)

Let D_1 and D_2 be two strongly connected digraph, then
\[\kappa(D_1 \square D_2) \geq \kappa(D_1) + \kappa(D_2). \]

Theorem (Chiue and Shieh, 1999)

Let G_1 and G_2 be two connected graph, then
\[\lambda(G_1 \square G_2) \geq \lambda(G_1) + \lambda(G_2). \]

- These recent study are motivated by their applications in the design of interconnection networks.
Theorem (Xu and Yang 2003)

Let G_1 and G_2 be two nontrivial connected graphs, then

$$\lambda(G_1 \Box G_2) = \min\{v_1\lambda_2, v_2\lambda_1, \delta_1 + \delta_2\},$$

where v_i, δ_i and λ_i are the order, the minimum degree and the edge-connectivity of the graph $G_i (i = 1, 2)$, respectively.
$\lambda(G_1 \square G_2) = \min\{v_1 \lambda_2, v_2 \lambda_1, \delta_1 + \delta_2\}$
Proof.

- By Menger’s Theorem, it suffices to show there are
 \(\min\{\nu_1\lambda_2, \nu_2\lambda_1, \delta_1 + \delta_2\} \) edge-disjoint paths between any pair of vertices.
- Let \(x_1x_2 \) and \(y_1y_2 \) be a pair of vertices, there are 3 cases:
 1. \(x_1 = y_1 \);
 2. \(x_2 = y_2 \);
 3. \(x_1 \neq y_1 \) and \(x_2 \neq y_2 \).
Other Result by Menger Method

\[\kappa(G_1 \square G_2) \geq \min \{ \kappa_1 + \delta_2, \kappa_2 + \delta_1 \} \]

\[\kappa(D_1 \square D_2) \geq \min \{ \kappa_1 + \delta_2, \kappa_2 + \delta_1, 2\kappa_1 + \kappa_2, 2\kappa_2 + \kappa_1 \} \]
Theorem (Xu and Yang 2005)

Let G_1 and G_2 be two nontrivial connected graphs, then

$$\kappa(G_1 \Box G_2) = \min\{v_1 \kappa_2, v_2 \kappa_1, \delta_1 + \delta_2\},$$

where v_i, δ_i and κ_i are the order, the minimum degree and the connectivity of graph $G_i (i = 1, 2)$, respectively.
Proof

- Let S be a minimum separating set.
- If $G_2^x - S_x$ is disconnected, then $|S_x| \geq \kappa_2$.

\[
S_x = S \cap (\{x\} \times V_2)
\]
If $G_2^x - S_x$ is disconnected and $y \in N_{G_1}(x)$, then $|S_x| + |S_y| \geq \delta_2 + 1$ and $|S_y| \geq 1$.

\[S_x = S \cap (\{x\} \times V_2) \]
Generalization to Digraphs

Theorem (Xu and Yang 2005)

Let D_1 and D_2 be two nontrivial strongly connected digraphs, then
\[\kappa(D_1 \square D_2) = \min\{\delta_1^+ + \delta_2^+, \delta_1^- + \delta_2^-, v_1\kappa_2, v_2\kappa_1\} \]
and
\[\lambda(D_1 \square D_2) = \min\{\delta_1^+ + \delta_2^+, \delta_1^- + \delta_2^-, v_1\lambda_2, v_2\lambda_1\}, \]
where v_i, δ_i^+, δ_i^-, κ_i and λ_i are the order, the minimum out-degree, the minimum in-degree, the connectivity and the edge-connectivity of D_i, respectively.
Some Remarks

- The second method (by estimating the size of minimum separating set) is more powerful.
- Can we apply the Menger Method to prove the vertex case and the case of digraphs?
References

G. Sabidussi, Graphs with given group and given graph theoretical properties. *Canadian J. Math.*, 9 (1957), 515-525.

J.-M. Xu and C. Yang, Connectivity and super-connectivity of Cartesian product graphs. accepted by *Ars Combin*.

J.-M. Xu and C. Yang, Connectivity and edge-connectivity of Cartesian product of digraphs. submitted to *Science in China Ser. A (Math.)*
Thank you!